doi: 10.3934/cpaa.2020272

Multiple solutions for nonlinear cone degenerate elliptic equations

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China

* Corresponding author

Dedicated to the 80th birthday of Professor Shuxing Chen

Received  May 2020 Revised  September 2020 Published  November 2020

Fund Project: This work is supported by the NSFC under the grands 11771218, 11371282, 11631011 and supported by the Fundamental Research Funds for the Central Universities

The present paper is concerned with the Dirichlet boundary value problem for nonlinear cone degenerate elliptic equations. First we introduce the weighted Sobolev spaces, inequalities and the property of compactness. After the appropriate energy functional established, we obtain the existence of infinitely many solutions in the weighted Sobolev spaces by applying the variational methods.

Citation: Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020272
References:
[1]

R. P. AgarwalM. B. Ghaemi and S. Saiedinezhad, The Nehari manifold for the degenerate p-Laplacian quasilinear elliptic equations, Adv. Math. Sci. Appl., 20 (2010), 37-50.   Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. CaoS. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Func. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[4]

S. Carl and D. Motreanu, Multiple and sign-changing solutions for the multivalued p-Laplacian equation, Math. Nachr., 283 (2010), 965-981.  doi: 10.1002/mana.200710049.  Google Scholar

[5]

A. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian and p-biharmonic operators, Opuscula Math., 33 (2013), 439-453. doi: 10.7494/OpMath.2013.33.3.439.  Google Scholar

[6]

A. Cavalheiro, Existence and Uniqueness of Solutions for Dirichlet Problems with Degenerate Nonlinear Elliptic Operators, Differ. Equ. Dyn. Syst., 24 (2016), 305-317. doi: 10.1007/s12591-014-0214-x.  Google Scholar

[7]

H. ChenX. Liu and Y. Wei, Existence Theorem for a class of Semi-linear totally Characteristic Elliptic Equations with Critical Cone Sobolev Exponents, Ann. Glob. Anal. Geom., 39 (2011), 27-43.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[8]

H. ChenX. Liu and Y. Wei, Cone Sobolev Inequality and Dirichlet problems for Nonlinear Elliptic Equations on Manifold with Conical Singularities, Calc. Var. PDEs, 43 (2012), 463-484.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[9]

H. ChenX. Liu and Y. Wei, Multiple Solutions for Semilinear totally Characteristic Elliptic Equations with Subcritical or Critical Cone Sobolev Exponents, J. Differ. Equ., 252 (2012), 4200-4228.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[10]

H. ChenY. Wei and B. Zhou, Existence of Solutions for Degenerate Elliptic Equations with Singular Potential on Conical Singular Manifolds, Math. Nachr., 285 (2012), 1370-1384.  doi: 10.1002/mana.201100088.  Google Scholar

[11]

S. CoriascoE. Schrohe and J. Seiler, Realizations of differential operators on conic manifolds with boundary, Ann. Glob. Anal. Geom., 31 (2007), 223-285.  doi: 10.1007/s10455-006-9019-7.  Google Scholar

[12]

P. Drabek, Resonance Problems for the p -Laplacian, J Funct. Anal., 169 (1999), 189-200.  doi: 10.1006/jfan.1999.3501.  Google Scholar

[13]

Ju. V. Egorov and B. W. Schulze, Pseudo-differential operators, singularities, applications, Operator Theory, Advances and Applications 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[14] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.   Google Scholar
[15]

J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: Nonlinear Eigenvalues, Commun. in PDE, 12 (1987), 1389-1430.  doi: 10.1080/03605308708820534.  Google Scholar

[16]

Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl., 429 (2015), 1240-1257.  doi: 10.1016/j.jmaa.2015.04.069.  Google Scholar

[17]

R. B. Melrose and G. A. Mendoza, Elliptic operators of totally characteristic type, Math. Sci. Res., (1983), 29 pp. Google Scholar

[18]

P. H. Rabinowitz, Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mt. J. Math., 2 (1973), 161-192.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integr. Equat. Oper. Th., (2001), 93–114. doi: 10.1007/BF01202533.  Google Scholar

[20]

B. W. Schulze, Boundary value problems and singular pseudo-differential operators, Pure Appl. Math., (1999).  Google Scholar

[21]

H. Yamabe, On the deformations of Riemannian structures on compact manifolds, Osaka Math. J., (1960), 21–37.  Google Scholar

show all references

References:
[1]

R. P. AgarwalM. B. Ghaemi and S. Saiedinezhad, The Nehari manifold for the degenerate p-Laplacian quasilinear elliptic equations, Adv. Math. Sci. Appl., 20 (2010), 37-50.   Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. CaoS. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Func. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[4]

S. Carl and D. Motreanu, Multiple and sign-changing solutions for the multivalued p-Laplacian equation, Math. Nachr., 283 (2010), 965-981.  doi: 10.1002/mana.200710049.  Google Scholar

[5]

A. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian and p-biharmonic operators, Opuscula Math., 33 (2013), 439-453. doi: 10.7494/OpMath.2013.33.3.439.  Google Scholar

[6]

A. Cavalheiro, Existence and Uniqueness of Solutions for Dirichlet Problems with Degenerate Nonlinear Elliptic Operators, Differ. Equ. Dyn. Syst., 24 (2016), 305-317. doi: 10.1007/s12591-014-0214-x.  Google Scholar

[7]

H. ChenX. Liu and Y. Wei, Existence Theorem for a class of Semi-linear totally Characteristic Elliptic Equations with Critical Cone Sobolev Exponents, Ann. Glob. Anal. Geom., 39 (2011), 27-43.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[8]

H. ChenX. Liu and Y. Wei, Cone Sobolev Inequality and Dirichlet problems for Nonlinear Elliptic Equations on Manifold with Conical Singularities, Calc. Var. PDEs, 43 (2012), 463-484.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[9]

H. ChenX. Liu and Y. Wei, Multiple Solutions for Semilinear totally Characteristic Elliptic Equations with Subcritical or Critical Cone Sobolev Exponents, J. Differ. Equ., 252 (2012), 4200-4228.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[10]

H. ChenY. Wei and B. Zhou, Existence of Solutions for Degenerate Elliptic Equations with Singular Potential on Conical Singular Manifolds, Math. Nachr., 285 (2012), 1370-1384.  doi: 10.1002/mana.201100088.  Google Scholar

[11]

S. CoriascoE. Schrohe and J. Seiler, Realizations of differential operators on conic manifolds with boundary, Ann. Glob. Anal. Geom., 31 (2007), 223-285.  doi: 10.1007/s10455-006-9019-7.  Google Scholar

[12]

P. Drabek, Resonance Problems for the p -Laplacian, J Funct. Anal., 169 (1999), 189-200.  doi: 10.1006/jfan.1999.3501.  Google Scholar

[13]

Ju. V. Egorov and B. W. Schulze, Pseudo-differential operators, singularities, applications, Operator Theory, Advances and Applications 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[14] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.   Google Scholar
[15]

J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: Nonlinear Eigenvalues, Commun. in PDE, 12 (1987), 1389-1430.  doi: 10.1080/03605308708820534.  Google Scholar

[16]

Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl., 429 (2015), 1240-1257.  doi: 10.1016/j.jmaa.2015.04.069.  Google Scholar

[17]

R. B. Melrose and G. A. Mendoza, Elliptic operators of totally characteristic type, Math. Sci. Res., (1983), 29 pp. Google Scholar

[18]

P. H. Rabinowitz, Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mt. J. Math., 2 (1973), 161-192.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integr. Equat. Oper. Th., (2001), 93–114. doi: 10.1007/BF01202533.  Google Scholar

[20]

B. W. Schulze, Boundary value problems and singular pseudo-differential operators, Pure Appl. Math., (1999).  Google Scholar

[21]

H. Yamabe, On the deformations of Riemannian structures on compact manifolds, Osaka Math. J., (1960), 21–37.  Google Scholar

[1]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[2]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[5]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[6]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[7]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[8]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[9]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[15]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[16]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[17]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[18]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[19]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[20]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (49)
  • HTML views (30)
  • Cited by (0)

Other articles
by authors

[Back to Top]