July & August  2021, 20(7&8): 2505-2518. doi: 10.3934/cpaa.2020272

Multiple solutions for nonlinear cone degenerate elliptic equations

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China

* Corresponding author

Dedicated to the 80th birthday of Professor Shuxing Chen

Received  May 2020 Revised  September 2020 Published  July & August 2021 Early access  November 2020

Fund Project: This work is supported by the NSFC under the grands 11771218, 11371282, 11631011 and supported by the Fundamental Research Funds for the Central Universities

The present paper is concerned with the Dirichlet boundary value problem for nonlinear cone degenerate elliptic equations. First we introduce the weighted Sobolev spaces, inequalities and the property of compactness. After the appropriate energy functional established, we obtain the existence of infinitely many solutions in the weighted Sobolev spaces by applying the variational methods.

Citation: Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 2505-2518. doi: 10.3934/cpaa.2020272
References:
[1]

R. P. AgarwalM. B. Ghaemi and S. Saiedinezhad, The Nehari manifold for the degenerate p-Laplacian quasilinear elliptic equations, Adv. Math. Sci. Appl., 20 (2010), 37-50.   Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. CaoS. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Func. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[4]

S. Carl and D. Motreanu, Multiple and sign-changing solutions for the multivalued p-Laplacian equation, Math. Nachr., 283 (2010), 965-981.  doi: 10.1002/mana.200710049.  Google Scholar

[5]

A. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian and p-biharmonic operators, Opuscula Math., 33 (2013), 439-453. doi: 10.7494/OpMath.2013.33.3.439.  Google Scholar

[6]

A. Cavalheiro, Existence and Uniqueness of Solutions for Dirichlet Problems with Degenerate Nonlinear Elliptic Operators, Differ. Equ. Dyn. Syst., 24 (2016), 305-317. doi: 10.1007/s12591-014-0214-x.  Google Scholar

[7]

H. ChenX. Liu and Y. Wei, Existence Theorem for a class of Semi-linear totally Characteristic Elliptic Equations with Critical Cone Sobolev Exponents, Ann. Glob. Anal. Geom., 39 (2011), 27-43.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[8]

H. ChenX. Liu and Y. Wei, Cone Sobolev Inequality and Dirichlet problems for Nonlinear Elliptic Equations on Manifold with Conical Singularities, Calc. Var. PDEs, 43 (2012), 463-484.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[9]

H. ChenX. Liu and Y. Wei, Multiple Solutions for Semilinear totally Characteristic Elliptic Equations with Subcritical or Critical Cone Sobolev Exponents, J. Differ. Equ., 252 (2012), 4200-4228.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[10]

H. ChenY. Wei and B. Zhou, Existence of Solutions for Degenerate Elliptic Equations with Singular Potential on Conical Singular Manifolds, Math. Nachr., 285 (2012), 1370-1384.  doi: 10.1002/mana.201100088.  Google Scholar

[11]

S. CoriascoE. Schrohe and J. Seiler, Realizations of differential operators on conic manifolds with boundary, Ann. Glob. Anal. Geom., 31 (2007), 223-285.  doi: 10.1007/s10455-006-9019-7.  Google Scholar

[12]

P. Drabek, Resonance Problems for the p -Laplacian, J Funct. Anal., 169 (1999), 189-200.  doi: 10.1006/jfan.1999.3501.  Google Scholar

[13]

Ju. V. Egorov and B. W. Schulze, Pseudo-differential operators, singularities, applications, Operator Theory, Advances and Applications 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[14] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.   Google Scholar
[15]

J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: Nonlinear Eigenvalues, Commun. in PDE, 12 (1987), 1389-1430.  doi: 10.1080/03605308708820534.  Google Scholar

[16]

Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl., 429 (2015), 1240-1257.  doi: 10.1016/j.jmaa.2015.04.069.  Google Scholar

[17]

R. B. Melrose and G. A. Mendoza, Elliptic operators of totally characteristic type, Math. Sci. Res., (1983), 29 pp. Google Scholar

[18]

P. H. Rabinowitz, Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mt. J. Math., 2 (1973), 161-192.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integr. Equat. Oper. Th., (2001), 93–114. doi: 10.1007/BF01202533.  Google Scholar

[20]

B. W. Schulze, Boundary value problems and singular pseudo-differential operators, Pure Appl. Math., (1999).  Google Scholar

[21]

H. Yamabe, On the deformations of Riemannian structures on compact manifolds, Osaka Math. J., (1960), 21–37.  Google Scholar

show all references

References:
[1]

R. P. AgarwalM. B. Ghaemi and S. Saiedinezhad, The Nehari manifold for the degenerate p-Laplacian quasilinear elliptic equations, Adv. Math. Sci. Appl., 20 (2010), 37-50.   Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. CaoS. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Func. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[4]

S. Carl and D. Motreanu, Multiple and sign-changing solutions for the multivalued p-Laplacian equation, Math. Nachr., 283 (2010), 965-981.  doi: 10.1002/mana.200710049.  Google Scholar

[5]

A. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian and p-biharmonic operators, Opuscula Math., 33 (2013), 439-453. doi: 10.7494/OpMath.2013.33.3.439.  Google Scholar

[6]

A. Cavalheiro, Existence and Uniqueness of Solutions for Dirichlet Problems with Degenerate Nonlinear Elliptic Operators, Differ. Equ. Dyn. Syst., 24 (2016), 305-317. doi: 10.1007/s12591-014-0214-x.  Google Scholar

[7]

H. ChenX. Liu and Y. Wei, Existence Theorem for a class of Semi-linear totally Characteristic Elliptic Equations with Critical Cone Sobolev Exponents, Ann. Glob. Anal. Geom., 39 (2011), 27-43.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[8]

H. ChenX. Liu and Y. Wei, Cone Sobolev Inequality and Dirichlet problems for Nonlinear Elliptic Equations on Manifold with Conical Singularities, Calc. Var. PDEs, 43 (2012), 463-484.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[9]

H. ChenX. Liu and Y. Wei, Multiple Solutions for Semilinear totally Characteristic Elliptic Equations with Subcritical or Critical Cone Sobolev Exponents, J. Differ. Equ., 252 (2012), 4200-4228.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[10]

H. ChenY. Wei and B. Zhou, Existence of Solutions for Degenerate Elliptic Equations with Singular Potential on Conical Singular Manifolds, Math. Nachr., 285 (2012), 1370-1384.  doi: 10.1002/mana.201100088.  Google Scholar

[11]

S. CoriascoE. Schrohe and J. Seiler, Realizations of differential operators on conic manifolds with boundary, Ann. Glob. Anal. Geom., 31 (2007), 223-285.  doi: 10.1007/s10455-006-9019-7.  Google Scholar

[12]

P. Drabek, Resonance Problems for the p -Laplacian, J Funct. Anal., 169 (1999), 189-200.  doi: 10.1006/jfan.1999.3501.  Google Scholar

[13]

Ju. V. Egorov and B. W. Schulze, Pseudo-differential operators, singularities, applications, Operator Theory, Advances and Applications 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[14] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.   Google Scholar
[15]

J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: Nonlinear Eigenvalues, Commun. in PDE, 12 (1987), 1389-1430.  doi: 10.1080/03605308708820534.  Google Scholar

[16]

Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl., 429 (2015), 1240-1257.  doi: 10.1016/j.jmaa.2015.04.069.  Google Scholar

[17]

R. B. Melrose and G. A. Mendoza, Elliptic operators of totally characteristic type, Math. Sci. Res., (1983), 29 pp. Google Scholar

[18]

P. H. Rabinowitz, Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mt. J. Math., 2 (1973), 161-192.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integr. Equat. Oper. Th., (2001), 93–114. doi: 10.1007/BF01202533.  Google Scholar

[20]

B. W. Schulze, Boundary value problems and singular pseudo-differential operators, Pure Appl. Math., (1999).  Google Scholar

[21]

H. Yamabe, On the deformations of Riemannian structures on compact manifolds, Osaka Math. J., (1960), 21–37.  Google Scholar

[1]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[2]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[3]

T. V. Anoop, Nirjan Biswas, Ujjal Das. Admissible function spaces for weighted Sobolev inequalities. Communications on Pure & Applied Analysis, 2021, 20 (9) : 3259-3297. doi: 10.3934/cpaa.2021105

[4]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[5]

Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751

[6]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[7]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581

[8]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[9]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[10]

Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901

[11]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[12]

Baoyan Sun, Kung-Chien Wu. Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021147

[13]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[14]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[15]

Melvin Faierman. Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1463-1483. doi: 10.3934/cpaa.2020074

[16]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[17]

Tim McGraw, Baba Vemuri, Evren Özarslan, Yunmei Chen, Thomas Mareci. Variational denoising of diffusion weighted MRI. Inverse Problems & Imaging, 2009, 3 (4) : 625-648. doi: 10.3934/ipi.2009.3.625

[18]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1347-1361. doi: 10.3934/cpaa.2021023

[19]

Valerii Los, Vladimir Mikhailets, Aleksandr Murach. Parabolic problems in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021123

[20]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (182)
  • HTML views (407)
  • Cited by (0)

Other articles
by authors

[Back to Top]