January  2021, 20(1): 389-404. doi: 10.3934/cpaa.2020273

New general decay result for a system of viscoelastic wave equations with past history

1. 

The Preparatory Year Program, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2. 

Department of Mathematics, University of Sharjah, P. O. Box, 27272, Sharjah. UAE

*Corresponding author

Received  November 2019 Revised  September 2020 Published  January 2021 Early access  November 2020

Fund Project: This work is funded by KFUPM under Project #SB191037

This work is concerned with a coupled system of viscoelastic wave equations in the presence of infinite-memory terms. We show that the stability of the system holds for a much larger class of kernels. More precisely, we consider the kernels
$ g_i : [0, +\infty) \rightarrow (0, +\infty) $
satisfying
$ g_i'(t)\leq-\xi_i(t)H_i(g_i(t)),\qquad\forall\,t\geq0 \quad\mathrm{and\ for\ }i = 1,2, $
where
$ \xi_i $
and
$ H_i $
are functions satisfying some specific properties. Under this very general assumption on the behavior of
$ g_i $
at infinity, we establish a relation between the decay rate of the solutions and the growth of
$ g_i $
at infinity. This work generalizes and improves earlier results in the literature. Moreover, we drop the boundedness assumptions on the history data, usually made in the literature.
Citation: Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273
References:
[1]

M. Al-Gharabli and M. Kafini, A general decay result of a coupled system of nonlinear wave equations, Rend. Circ. Mat. Palermo, II (2017), 1-13.  doi: 10.1007/s12215-017-0301-2.  Google Scholar

[2]

A. Al-Mahdi and M. Al-Gharabli, New general decay results in an infinite memory viscoelastic problem with nonlinear damping, Bound. Value Probl., 2019 (2019), 140. doi: 10.1186/s13661-019-1253-6.  Google Scholar

[3]

D. Andrade and A. Mognon, Global Solutions for a System of Klein- Gordon Equations with Memory, Bol. Soc. Paran. Mat, 21 (2003), 127-138.  doi: 10.5269/bspm.v21i1-2.7512.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

F. BelhannacheM. Algharabli and S. Messaoudi, Asymptotic stability for a viscoelastic equation with nonlinear damping and very general type of relaxation function, J. Dyn. Control Sys., 26 (2020), 45-67.  doi: 10.1007/s10883-019-9429-z.  Google Scholar

[6]

S. Berrimi and S. A. Messaoudi, Exponential Decay of Solutions To a Viscoelastic. Electron, J. Differ. Equ., 2004 (2004), 1-10.   Google Scholar

[7]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720.  doi: 10.3934/cpaa.2005.4.705.  Google Scholar

[8]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differ. Equ., 7 (1970), 554-569.  doi: 10.1016/0022-0396(70)90101-4.  Google Scholar

[9]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[10]

C. GiorgiJ. Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[11]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[12]

A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351-373.  doi: 10.3846/mma.2020.10458.  Google Scholar

[13]

A. Guesmia and N. Tatar, Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay, Hal-Inria, (2015). doi: 10.3934/cpaa.2015.14.457.  Google Scholar

[14]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346-358.  doi: 10.1002/mma.1041.  Google Scholar

[15]

W. J. Hrusa, Global Existence and Asymptotic Stability for a Semilinear Hyperbolic Volterra Equation with Large Initial Data, SIAM J. Math. Anal., 16 (1985), 110-134.  doi: 10.1137/0516007.  Google Scholar

[16]

W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms, J. Math. Phys., 50 (2019), 113506. doi: 10.1063/1.3254323.  Google Scholar

[17]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457-1467.  doi: 10.1016/j.jmaa.2007.11.048.  Google Scholar

[18]

S. A. Messaoudi and M. M. Al-Gharabli, A general decay result of a nonlinear system of wave equations with infinite memories, Appl. Math. Comput., 259 (2015), 540-551.  doi: 10.1016/j.amc.2015.02.085.  Google Scholar

[19]

S. A. Messaoudi and M. M. Al-Gharabli, A general stability result for a nonlinear wave equation with infinite memory, Appl. Math. Lett., 26 (2013), 1082-1086.  doi: 10.1016/j.aml.2013.06.002.  Google Scholar

[20]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.  Google Scholar

[21]

S. A. Messaoudi and J. Hassan, On the general decay for a system of viscoelastic wave equations, In Current Trends in Mathematical Analysis and Its Interdisciplinary Applications, (2019), 287–310.  Google Scholar

[22]

S. A. Messaoudi and N. Tatar, Uniform stabilization of solutions of a nonlinear system of viscoelastic equations, Appl. Anal., 87 (2008), 247-263.  doi: 10.1080/00036810701668394.  Google Scholar

[23]

J. E. Rivera and E. C. Lapa, Decay rates of solutions of an anisotropic inhomogeneousn-dimensional viscoelastic equation with polynomially decaying kernels, Commun. Math. Phys., 177 (1996), 583-602.   Google Scholar

[24]

J. E. Munoz Rivera and J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity, Q. Appl. Math., 52 (1994), 629-648.  doi: 10.1090/qam/1306041.  Google Scholar

[25]

M. I. Mustafa, Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations, Nonlinear Anal., 3 (2012), 452-463.  doi: 10.1016/j.nonrwa.2011.08.002.  Google Scholar

[26]

M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J Math. Anal. Appl., 457 (2018), 134-152.  doi: 10.1016/j.jmaa.2017.08.019.  Google Scholar

[27]

B. Said-HouariS. A. Messaoudi and A. Guesmia, General decay of solutions of a nonlinear system of viscoelastic wave equations, Nonlinear Differ. Equ. Appl., 18 (2011), 659-684.  doi: 10.1007/s00030-011-0112-7.  Google Scholar

[28]

M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electron. J. Differ. Equ., 2002 (2002), 1-17.   Google Scholar

[29]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. Fr., 91 (1963), 129-135.   Google Scholar

show all references

References:
[1]

M. Al-Gharabli and M. Kafini, A general decay result of a coupled system of nonlinear wave equations, Rend. Circ. Mat. Palermo, II (2017), 1-13.  doi: 10.1007/s12215-017-0301-2.  Google Scholar

[2]

A. Al-Mahdi and M. Al-Gharabli, New general decay results in an infinite memory viscoelastic problem with nonlinear damping, Bound. Value Probl., 2019 (2019), 140. doi: 10.1186/s13661-019-1253-6.  Google Scholar

[3]

D. Andrade and A. Mognon, Global Solutions for a System of Klein- Gordon Equations with Memory, Bol. Soc. Paran. Mat, 21 (2003), 127-138.  doi: 10.5269/bspm.v21i1-2.7512.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

F. BelhannacheM. Algharabli and S. Messaoudi, Asymptotic stability for a viscoelastic equation with nonlinear damping and very general type of relaxation function, J. Dyn. Control Sys., 26 (2020), 45-67.  doi: 10.1007/s10883-019-9429-z.  Google Scholar

[6]

S. Berrimi and S. A. Messaoudi, Exponential Decay of Solutions To a Viscoelastic. Electron, J. Differ. Equ., 2004 (2004), 1-10.   Google Scholar

[7]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720.  doi: 10.3934/cpaa.2005.4.705.  Google Scholar

[8]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differ. Equ., 7 (1970), 554-569.  doi: 10.1016/0022-0396(70)90101-4.  Google Scholar

[9]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[10]

C. GiorgiJ. Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[11]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[12]

A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351-373.  doi: 10.3846/mma.2020.10458.  Google Scholar

[13]

A. Guesmia and N. Tatar, Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay, Hal-Inria, (2015). doi: 10.3934/cpaa.2015.14.457.  Google Scholar

[14]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346-358.  doi: 10.1002/mma.1041.  Google Scholar

[15]

W. J. Hrusa, Global Existence and Asymptotic Stability for a Semilinear Hyperbolic Volterra Equation with Large Initial Data, SIAM J. Math. Anal., 16 (1985), 110-134.  doi: 10.1137/0516007.  Google Scholar

[16]

W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms, J. Math. Phys., 50 (2019), 113506. doi: 10.1063/1.3254323.  Google Scholar

[17]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457-1467.  doi: 10.1016/j.jmaa.2007.11.048.  Google Scholar

[18]

S. A. Messaoudi and M. M. Al-Gharabli, A general decay result of a nonlinear system of wave equations with infinite memories, Appl. Math. Comput., 259 (2015), 540-551.  doi: 10.1016/j.amc.2015.02.085.  Google Scholar

[19]

S. A. Messaoudi and M. M. Al-Gharabli, A general stability result for a nonlinear wave equation with infinite memory, Appl. Math. Lett., 26 (2013), 1082-1086.  doi: 10.1016/j.aml.2013.06.002.  Google Scholar

[20]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.  Google Scholar

[21]

S. A. Messaoudi and J. Hassan, On the general decay for a system of viscoelastic wave equations, In Current Trends in Mathematical Analysis and Its Interdisciplinary Applications, (2019), 287–310.  Google Scholar

[22]

S. A. Messaoudi and N. Tatar, Uniform stabilization of solutions of a nonlinear system of viscoelastic equations, Appl. Anal., 87 (2008), 247-263.  doi: 10.1080/00036810701668394.  Google Scholar

[23]

J. E. Rivera and E. C. Lapa, Decay rates of solutions of an anisotropic inhomogeneousn-dimensional viscoelastic equation with polynomially decaying kernels, Commun. Math. Phys., 177 (1996), 583-602.   Google Scholar

[24]

J. E. Munoz Rivera and J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity, Q. Appl. Math., 52 (1994), 629-648.  doi: 10.1090/qam/1306041.  Google Scholar

[25]

M. I. Mustafa, Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations, Nonlinear Anal., 3 (2012), 452-463.  doi: 10.1016/j.nonrwa.2011.08.002.  Google Scholar

[26]

M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J Math. Anal. Appl., 457 (2018), 134-152.  doi: 10.1016/j.jmaa.2017.08.019.  Google Scholar

[27]

B. Said-HouariS. A. Messaoudi and A. Guesmia, General decay of solutions of a nonlinear system of viscoelastic wave equations, Nonlinear Differ. Equ. Appl., 18 (2011), 659-684.  doi: 10.1007/s00030-011-0112-7.  Google Scholar

[28]

M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electron. J. Differ. Equ., 2002 (2002), 1-17.   Google Scholar

[29]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. Fr., 91 (1963), 129-135.   Google Scholar

[1]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[2]

Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114

[3]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[4]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[5]

Ammar Khemmoudj, Imane Djaidja. General decay for a viscoelastic rotating Euler-Bernoulli beam. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3531-3557. doi: 10.3934/cpaa.2020154

[6]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[7]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[8]

Salim A. Messaoudi, Jamilu Hashim Hassan. New general decay results in a finite-memory bresse system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1637-1662. doi: 10.3934/cpaa.2019078

[9]

Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control & Related Fields, 2021, 11 (2) : 353-371. doi: 10.3934/mcrf.2020040

[10]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic & Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[11]

Sandra Carillo. Some remarks on the model of rigid heat conductor with memory: Unbounded heat relaxation function. Evolution Equations & Control Theory, 2019, 8 (1) : 31-42. doi: 10.3934/eect.2019002

[12]

Ammar Khemmoudj, Yacine Mokhtari. General decay of the solution to a nonlinear viscoelastic modified von-Kármán system with delay. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3839-3866. doi: 10.3934/dcds.2019155

[13]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021038

[14]

W. Wei, Yin Li, Zheng-An Yao. Decay of the compressible viscoelastic flows. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1603-1624. doi: 10.3934/cpaa.2016004

[15]

Baowei Feng, Abdelaziz Soufyane. New general decay results for a von Karman plate equation with memory-type boundary conditions. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1757-1774. doi: 10.3934/dcds.2020092

[16]

Wenjun Liu, Zhijing Chen, Zhiyu Tu. New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory. Electronic Research Archive, 2020, 28 (1) : 433-457. doi: 10.3934/era.2020025

[17]

Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete & Continuous Dynamical Systems, 1996, 2 (1) : 23-52. doi: 10.3934/dcds.1996.2.23

[18]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[19]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[20]

Yuri Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 697-709. doi: 10.3934/dcdsb.2006.6.697

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (265)
  • HTML views (56)
  • Cited by (0)

[Back to Top]