• Previous Article
    Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food
  • CPAA Home
  • This Issue
  • Next Article
    New general decay result for a system of viscoelastic wave equations with past history
January  2021, 20(1): 405-425. doi: 10.3934/cpaa.2020274

Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials

1. 

Dipartimento di Ingegneria dell'Informazione ed Elettrica e Matematica Applicata, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy

2. 

Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università degli Studi di Napoli Federico Ⅱ, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy

3. 

Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Napoli Federico Ⅱ, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy

* Corresponding author

Received  March 2020 Revised  September 2020 Published  November 2020

Fund Project: The first two authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

The main results in the paper are the weighted multipolar Hardy inequalities
$ \begin{equation*} c\int_{\mathbb{R}^N}\sum\limits_{i = 1}^n\frac{\varphi^2}{|x-a_i|^2}\,\mu(x)dx \leq\int_{\mathbb{R}^N}|\nabla \varphi |^2\mu(x)dx+ K\int_{\mathbb{R}^N} \varphi^2\mu(x)dx, \end{equation*} $
in
$ \mathbb{R}^N $
for any
$ \varphi $
in a suitable weighted Sobolev space, with
$ 0<c\le c_{o,\mu} $
,
$ a_1,\dots,a_n\in \mathbb{R}^N $
,
$ K $
constant. The weight functions
$ \mu $
are of a quite general type.
The paper fits in the framework of Kolmogorov operators defined on smooth functions
$ \begin{equation*} Lu = \Delta u+\frac{\nabla \mu}{\mu}\cdot\nabla u, \end{equation*} $
perturbed by multipolar inverse square potentials, and related evolution problems. Necessary and sufficient conditions for the existence of exponentially bounded in time positive solutions to the associated initial value problem are based on weighted Hardy inequalities. For constants
$ c $
beyond the optimal Hardy constant
$ c_{o,\mu} $
we are able to show nonexistence of positive solutions.
Citation: Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274
References:
[1]

A. AlbaneseL. Lorenzi and E. Mangino, $L^p$–uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R} ^N$, J. Funct. Anal., 256 (2009), 1238-1257.  doi: 10.1016/j.jfa.2008.07.022.  Google Scholar

[2]

D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa, 22 (1968), 607-694.   Google Scholar

[3]

P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Am. Math. Soc., 284 (1984), 121-139.  doi: 10.2307/1999277.  Google Scholar

[4]

R. BosiJ. Dolbeault and M. J. Esteban, Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Commun. Pure Appl. Anal., 7 (2008), 533-562.  doi: 10.3934/cpaa.2008.7.533.  Google Scholar

[5]

X. Cabré and Y. Martel, Existence versus explosion instantanée pour des e$\acute{\rm{q}}$uations de la chaleur lineáires avec potentiel singulier, C. R. Acad. Sci. Paris, 329 (1999), 973-978.  doi: 10.1016/S0764-4442(00)88588-2.  Google Scholar

[6]

A. CanaleF. GregorioA. Rhandi and C. Tacelli, Weighted Hardy's inequalities and Kolmogorov-type operators, Appl. Anal., 98 (2019), 1236-1254.  doi: 10.1080/00036811.2017.1419200.  Google Scholar

[7]

A. CanaleR. M. Mininni and A. Rhandi, Analytic approach to solve a degenerate parabolic PDE for the Heston model, Math. Meth. Appl. Sci., 40 (2017), 4982-4992.  doi: 10.1002/mma.4363.  Google Scholar

[8]

A. Canale and F. Pappalardo, Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials, J. Math. Anal. Appl., 463 (2018), 895-909.  doi: 10.1016/j.jmaa.2018.03.059.  Google Scholar

[9]

A. CanaleF. Pappalardo and C. Tarantino, A class of weighted Hardy inequalities and applications to evolution problems, Ann. Mat. Pura Appl., 199 (2020), 1171-1181.  doi: 10.1007/s10231-019-00916-y.  Google Scholar

[10]

A. CanaleA. Rhandi and C. Tacelli, Schrödinger type operators with unbounded diffusion and potential terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., XVI (2016), 581-601.  doi: 10.2422/2036-2145.201409_007.  Google Scholar

[11]

A. CanaleA. Rhandi and C. Tacelli, Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms, Z. Anal. Anwend., 36 (2017), 377-392.  doi: 10.4171/ZAA/1593.  Google Scholar

[12]

A. Canale and C. Tacelli, Kernel estimates for a Schrödinger type operator, Riv. Mat. Univ. Parma, 7 (2016), 341-350.   Google Scholar

[13]

C. Cazacu, New estimates for the Hardy constants of multipolar Schrödinger operators, Commun. Contemp. Math., 18 (2016), 1-28.  doi: 10.1142/S0219199715500935.  Google Scholar

[14]

C. Cazacu and E. Zuazua, Improved multipolar Hardy inequalities, in Studies in Phase Space Analysis of PDEs (eds. M. Cicognani, F. Colombini and D. Del Santo), Progress in Nonlinear Differential Equations and Their Applications 84, Birkhäuser, New York (2013), 37–52. doi: 10.1007/978-1-4614-6348-1_3.  Google Scholar

[15]

V. FelliE. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250 (2007), 265-316.  doi: 10.1016/j.jfa.2006.10.019.  Google Scholar

[16]

G. R. GoldsteinJ. A. Goldstein and A. Rhandi, Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential, Appl. Anal., 91 (2012), 2057-2071.  doi: 10.1080/00036811.2011.587809.  Google Scholar

[17]

O. Ladyz'enskaya, V. Solonnikov and N. Ural'tseva, Linear and quasilinear equations of parabolic type, American Mathematical Society, Providence, Rhode Island, 1968.  Google Scholar

[18]

L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Pure and Applied Mathematics, CRC Press, 2006.  Google Scholar

[19]

E. Mitidieri, A simple approach to Hardy inequalities, Math. Notes, 67 (2000), 479-486.  doi: 10.1007/BF02676404.  Google Scholar

[20]

J. D. Morgan, Schrödinger operators whose potentials have separated singularities, J. Operat. Theor., 1 (1979), 109-115.   Google Scholar

[21]

B. Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), 295-308.   Google Scholar

[22]

J. M. Tölle, Uniqueness of weighted Sobolev spaces with weakly differentiable weights, J. Funct. Anal., 263 (2012), 3195-3223.  doi: 10.1016/j.jfa.2012.08.002.  Google Scholar

show all references

References:
[1]

A. AlbaneseL. Lorenzi and E. Mangino, $L^p$–uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R} ^N$, J. Funct. Anal., 256 (2009), 1238-1257.  doi: 10.1016/j.jfa.2008.07.022.  Google Scholar

[2]

D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa, 22 (1968), 607-694.   Google Scholar

[3]

P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Am. Math. Soc., 284 (1984), 121-139.  doi: 10.2307/1999277.  Google Scholar

[4]

R. BosiJ. Dolbeault and M. J. Esteban, Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Commun. Pure Appl. Anal., 7 (2008), 533-562.  doi: 10.3934/cpaa.2008.7.533.  Google Scholar

[5]

X. Cabré and Y. Martel, Existence versus explosion instantanée pour des e$\acute{\rm{q}}$uations de la chaleur lineáires avec potentiel singulier, C. R. Acad. Sci. Paris, 329 (1999), 973-978.  doi: 10.1016/S0764-4442(00)88588-2.  Google Scholar

[6]

A. CanaleF. GregorioA. Rhandi and C. Tacelli, Weighted Hardy's inequalities and Kolmogorov-type operators, Appl. Anal., 98 (2019), 1236-1254.  doi: 10.1080/00036811.2017.1419200.  Google Scholar

[7]

A. CanaleR. M. Mininni and A. Rhandi, Analytic approach to solve a degenerate parabolic PDE for the Heston model, Math. Meth. Appl. Sci., 40 (2017), 4982-4992.  doi: 10.1002/mma.4363.  Google Scholar

[8]

A. Canale and F. Pappalardo, Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials, J. Math. Anal. Appl., 463 (2018), 895-909.  doi: 10.1016/j.jmaa.2018.03.059.  Google Scholar

[9]

A. CanaleF. Pappalardo and C. Tarantino, A class of weighted Hardy inequalities and applications to evolution problems, Ann. Mat. Pura Appl., 199 (2020), 1171-1181.  doi: 10.1007/s10231-019-00916-y.  Google Scholar

[10]

A. CanaleA. Rhandi and C. Tacelli, Schrödinger type operators with unbounded diffusion and potential terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., XVI (2016), 581-601.  doi: 10.2422/2036-2145.201409_007.  Google Scholar

[11]

A. CanaleA. Rhandi and C. Tacelli, Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms, Z. Anal. Anwend., 36 (2017), 377-392.  doi: 10.4171/ZAA/1593.  Google Scholar

[12]

A. Canale and C. Tacelli, Kernel estimates for a Schrödinger type operator, Riv. Mat. Univ. Parma, 7 (2016), 341-350.   Google Scholar

[13]

C. Cazacu, New estimates for the Hardy constants of multipolar Schrödinger operators, Commun. Contemp. Math., 18 (2016), 1-28.  doi: 10.1142/S0219199715500935.  Google Scholar

[14]

C. Cazacu and E. Zuazua, Improved multipolar Hardy inequalities, in Studies in Phase Space Analysis of PDEs (eds. M. Cicognani, F. Colombini and D. Del Santo), Progress in Nonlinear Differential Equations and Their Applications 84, Birkhäuser, New York (2013), 37–52. doi: 10.1007/978-1-4614-6348-1_3.  Google Scholar

[15]

V. FelliE. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250 (2007), 265-316.  doi: 10.1016/j.jfa.2006.10.019.  Google Scholar

[16]

G. R. GoldsteinJ. A. Goldstein and A. Rhandi, Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential, Appl. Anal., 91 (2012), 2057-2071.  doi: 10.1080/00036811.2011.587809.  Google Scholar

[17]

O. Ladyz'enskaya, V. Solonnikov and N. Ural'tseva, Linear and quasilinear equations of parabolic type, American Mathematical Society, Providence, Rhode Island, 1968.  Google Scholar

[18]

L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Pure and Applied Mathematics, CRC Press, 2006.  Google Scholar

[19]

E. Mitidieri, A simple approach to Hardy inequalities, Math. Notes, 67 (2000), 479-486.  doi: 10.1007/BF02676404.  Google Scholar

[20]

J. D. Morgan, Schrödinger operators whose potentials have separated singularities, J. Operat. Theor., 1 (1979), 109-115.   Google Scholar

[21]

B. Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), 295-308.   Google Scholar

[22]

J. M. Tölle, Uniqueness of weighted Sobolev spaces with weakly differentiable weights, J. Funct. Anal., 263 (2012), 3195-3223.  doi: 10.1016/j.jfa.2012.08.002.  Google Scholar

[1]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[8]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[11]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[12]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[13]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[14]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[15]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[16]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[18]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[19]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[20]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (14)
  • HTML views (34)
  • Cited by (0)

[Back to Top]