• Previous Article
    The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field
  • CPAA Home
  • This Issue
  • Next Article
    Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials
January  2021, 20(1): 427-448. doi: 10.3934/cpaa.2020275

Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food

1. 

College of Mathematics, Sichuan University, Sichuan 610065, China

2. 

College of Applied Mathematics, Chengdu University of Information Technology, Sichuan 610225, China

3. 

School of Mathematical Sciences, Sichuan Normal University, Sichuan 610068, China

* Corresponding author

Received  March 2020 Revised  September 2020 Published  November 2020

Fund Project: The first author is supported by NSF grant 11901408 and 11711306

The article aims to investigate the dynamic transitions of a toxin-producing phytoplankton zooplankton model with additional food in a 2D-rectangular domain. The investigation is based on the dynamic transition theory for dissipative dynamical systems. Firstly, we verify the principle of exchange of stability by analysing the corresponding linear eigenvalue problem. Secondly, by using the technique of center manifold reduction, we determine the types of transitions. Our results imply that the model may bifurcate two new steady state solutions, which are either attractors or saddle points. In addition, the model may also bifurcate a new periodic solution as the control parameter passes critical value. Finally, some numerical results are given to illustrate our conclusions.

Citation: Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275
References:
[1]

S. ChakrabortyP. TiwariA. Misra and J. Chattopadhyay, Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton, Math. Bio., 264 (2015), 94-100.  doi: 10.1016/j.mbs.2015.03.010.  Google Scholar

[2]

H. DijkstraT. SengulJ. Shen and S. Wang., Dynamic transition of quasi-geostrophic channel flow, SIAM J. Appl. Math., 75 (2015), 2361-2378.  doi: 10.1137/15M1008166.  Google Scholar

[3]

M. Garvie, Finite-difference schemes for reaction-diffusion equations modelling predator-prey interactions in matlab, B. Math. Biol., 69 (2007), 931-956.  doi: 10.1007/s11538-006-9062-3.  Google Scholar

[4]

R. Han and B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with allee effect, Nonlinear Anal. Real World Appl., 45 (2019), 822-853.  doi: 10.1016/j.nonrwa.2018.05.018.  Google Scholar

[5]

D. HanM. Hernandez and Q. Wang, On the instabilities and transitions of the Western boundary current, Commun. Comput. Phys., 26 (2019), 35-56.  doi: 10.4208/cicp.oa-2018-0066.  Google Scholar

[6]

D. HanM. Hernandez and Q. Wang, Dynamical transitions of a low-dimensional model for rayleigh-b$\acute{e}$nard convection under a vertical magnetic field, Chaos Solitons Fractals, 114 (2018), 370-380.  doi: 10.1016/j.chaos.2018.06.027.  Google Scholar

[7]

C. Hsia, C. Lin, T. Ma and S. Wang, Tropical atmospheric circulations with humidity effects, Proc. A., 471 (2015), 20140353. doi: 10.1098/rspa.2014.0353.  Google Scholar

[8]

C. HsiaT. Ma and S. Wang, Rotating boussinesq equations: dynamic stability and transition, Discrete Contin Dyn. Syst. Ser. A, 28 (2010), 99-130.  doi: 10.3934/dcds.2010.28.99.  Google Scholar

[9]

S. JangJ. Baglama and W. Li, Dynamics of phytoplankton-zooplankton systems with toxin producing phytoplankton, Appl. Math. Comput., 227 (2014), 717-740.  doi: 10.1016/j.amc.2013.11.051.  Google Scholar

[10]

Z. Jiang and T. Zhang, Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay, Chaos Solitons Fractals, 104 (2017), 693-704.  doi: 10.1016/j.chaos.2017.09.030.  Google Scholar

[11]

C. KieuT. SengulQ. Wang and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), 196-215.  doi: 10.1016/j.cnsns.2018.05.010.  Google Scholar

[12]

H. Liu, T. Sengul and S. Wang, Dynamic transition for quasilinear system and Cahn-Hilliard equation with onsager mobility, J. Math. Phys., 53 (2012), 023518, 31. doi: 10.1063/1.3687414.  Google Scholar

[13]

H. LiuT. SengulS. Wang and P. Zhang, Dynamic transition and pattern formation for a Cahn-Hilliard model with long-range repulsive interactions, Commun. Math. Sci., 13 (2015), 1289-1315.  doi: 10.4310/CMS.2015.v13.n5.a10.  Google Scholar

[14]

C. Lu, Y. Mao, T. Sengul and Q. Wang, On the spectral instability and bifurcation of the 2D-quasi-geostrophic potential vorticity equation with a generalized Kolmogorov forcing, Phys. D, 403 (2020), 132296. doi: 10.1016/j.physd.2019.132296.  Google Scholar

[15]

Y. Mao, Dynamic transitions of the fitzhugh-nagumo equations on a finite domain, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3935-3947.  doi: 10.3934/dcdsb.2018118.  Google Scholar

[16]

T. Ma and S. Wang, Dynamic transition for thermohaline circulation, Phys. D, 239 (2010), 167-189.  doi: 10.1016/j.physd.2009.10.014.  Google Scholar

[17]

T. Ma and S. Wang, Phase Transition Dynamics, Springer, New York, 2014. doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[18]

T. Ma and S. Wang, Dynamic transition and pattern formation for chemotactic systems, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2809-2835.  doi: 10.3934/dcdsb.2014.19.2809.  Google Scholar

[19]

Y. MaoD. Yan and C. Lu, Dynamic transitions and stability for the acetabularia whorl formation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5989-6004.  doi: 10.3934/dcdsb.2019117.  Google Scholar

[20]

A. MedvinskyS. PetrovskiiI. TikhonovaH. Malchow and B. Liu, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 3 (2002), 311-370.  doi: 10.1137/S0036144502404442.  Google Scholar

[21]

Z. Pan, T. Sengul and Q. Wang, On the viscous instabilities and transitions of two-layer model with a layered topography, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104978. doi: 10.1016/j.cnsns.2019.104978.  Google Scholar

[22]

F. Rao, Spatiotemporal dynamics in a reaction-diffusion toxic-phytoplankton zooplankton model, J. Stat. Mech. Theory Exp., (2013), 08014. doi: 10.1088/1742-5468/2013/08/p08014.  Google Scholar

[23]

T. Saha and M. Bandyopahyay, Dynamical analysis of toxin producing phytoplankton-zooplankton interactions, Nonlinear Anal. Real World Appl., 10 (2009), 314-332.  doi: 10.1016/j.nonrwa.2007.09.001.  Google Scholar

[24]

Q. Song, R. Yang, C. Zhang and L. Tang, Bifurcation Analysis of a Diffusive Predator-Prey Model with Monod-Haldane Functional Response, Int. J. Bifurcat. Chaos, 29 (2019), 1950152. doi: 10.1142/S0218127419501529.  Google Scholar

[25]

W. WangS. LiuD. Tian and D. Wang, Pattern dynamics in a toxin-producing phytoplankton-zooplankton model with additional food, Nonlinear Dyn., 94 (2018), 211-228.   Google Scholar

[26]

R. Yang and C. Zhang, Dynamics in a diffusive predator-prey system with a constant prey refuge and delay, Nonlinear Anal. Real World Appl., 31 (2016), 1-22. doi: 10.1016/j.nonrwa.2016.01.005.  Google Scholar

[27]

X. YuS. Yuan and T. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment, Appl. Math. Comput., 347 (2019), 249-264.  doi: 10.1016/j.amc.2018.11.005.  Google Scholar

[28]

D. Zhang and R. Liu, Dynamical transition for S-K-T biological competing model with cross-diffusion, Math. Methods Appl. Sci., 41 (2018), 4641-4658.  doi: 10.1002/mma.4919.  Google Scholar

[29]

W. Zheng and J. Sugie, Global asymptotic stability and equiasymptotic stability for time-varying phytoplankton-zooplankton-fish system, Nonlinear Anal. Real World Appl., 46 (2019), 116-136.  doi: 10.1016/j.nonrwa.2018.09.015.  Google Scholar

show all references

References:
[1]

S. ChakrabortyP. TiwariA. Misra and J. Chattopadhyay, Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton, Math. Bio., 264 (2015), 94-100.  doi: 10.1016/j.mbs.2015.03.010.  Google Scholar

[2]

H. DijkstraT. SengulJ. Shen and S. Wang., Dynamic transition of quasi-geostrophic channel flow, SIAM J. Appl. Math., 75 (2015), 2361-2378.  doi: 10.1137/15M1008166.  Google Scholar

[3]

M. Garvie, Finite-difference schemes for reaction-diffusion equations modelling predator-prey interactions in matlab, B. Math. Biol., 69 (2007), 931-956.  doi: 10.1007/s11538-006-9062-3.  Google Scholar

[4]

R. Han and B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with allee effect, Nonlinear Anal. Real World Appl., 45 (2019), 822-853.  doi: 10.1016/j.nonrwa.2018.05.018.  Google Scholar

[5]

D. HanM. Hernandez and Q. Wang, On the instabilities and transitions of the Western boundary current, Commun. Comput. Phys., 26 (2019), 35-56.  doi: 10.4208/cicp.oa-2018-0066.  Google Scholar

[6]

D. HanM. Hernandez and Q. Wang, Dynamical transitions of a low-dimensional model for rayleigh-b$\acute{e}$nard convection under a vertical magnetic field, Chaos Solitons Fractals, 114 (2018), 370-380.  doi: 10.1016/j.chaos.2018.06.027.  Google Scholar

[7]

C. Hsia, C. Lin, T. Ma and S. Wang, Tropical atmospheric circulations with humidity effects, Proc. A., 471 (2015), 20140353. doi: 10.1098/rspa.2014.0353.  Google Scholar

[8]

C. HsiaT. Ma and S. Wang, Rotating boussinesq equations: dynamic stability and transition, Discrete Contin Dyn. Syst. Ser. A, 28 (2010), 99-130.  doi: 10.3934/dcds.2010.28.99.  Google Scholar

[9]

S. JangJ. Baglama and W. Li, Dynamics of phytoplankton-zooplankton systems with toxin producing phytoplankton, Appl. Math. Comput., 227 (2014), 717-740.  doi: 10.1016/j.amc.2013.11.051.  Google Scholar

[10]

Z. Jiang and T. Zhang, Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay, Chaos Solitons Fractals, 104 (2017), 693-704.  doi: 10.1016/j.chaos.2017.09.030.  Google Scholar

[11]

C. KieuT. SengulQ. Wang and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), 196-215.  doi: 10.1016/j.cnsns.2018.05.010.  Google Scholar

[12]

H. Liu, T. Sengul and S. Wang, Dynamic transition for quasilinear system and Cahn-Hilliard equation with onsager mobility, J. Math. Phys., 53 (2012), 023518, 31. doi: 10.1063/1.3687414.  Google Scholar

[13]

H. LiuT. SengulS. Wang and P. Zhang, Dynamic transition and pattern formation for a Cahn-Hilliard model with long-range repulsive interactions, Commun. Math. Sci., 13 (2015), 1289-1315.  doi: 10.4310/CMS.2015.v13.n5.a10.  Google Scholar

[14]

C. Lu, Y. Mao, T. Sengul and Q. Wang, On the spectral instability and bifurcation of the 2D-quasi-geostrophic potential vorticity equation with a generalized Kolmogorov forcing, Phys. D, 403 (2020), 132296. doi: 10.1016/j.physd.2019.132296.  Google Scholar

[15]

Y. Mao, Dynamic transitions of the fitzhugh-nagumo equations on a finite domain, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3935-3947.  doi: 10.3934/dcdsb.2018118.  Google Scholar

[16]

T. Ma and S. Wang, Dynamic transition for thermohaline circulation, Phys. D, 239 (2010), 167-189.  doi: 10.1016/j.physd.2009.10.014.  Google Scholar

[17]

T. Ma and S. Wang, Phase Transition Dynamics, Springer, New York, 2014. doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[18]

T. Ma and S. Wang, Dynamic transition and pattern formation for chemotactic systems, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2809-2835.  doi: 10.3934/dcdsb.2014.19.2809.  Google Scholar

[19]

Y. MaoD. Yan and C. Lu, Dynamic transitions and stability for the acetabularia whorl formation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5989-6004.  doi: 10.3934/dcdsb.2019117.  Google Scholar

[20]

A. MedvinskyS. PetrovskiiI. TikhonovaH. Malchow and B. Liu, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 3 (2002), 311-370.  doi: 10.1137/S0036144502404442.  Google Scholar

[21]

Z. Pan, T. Sengul and Q. Wang, On the viscous instabilities and transitions of two-layer model with a layered topography, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104978. doi: 10.1016/j.cnsns.2019.104978.  Google Scholar

[22]

F. Rao, Spatiotemporal dynamics in a reaction-diffusion toxic-phytoplankton zooplankton model, J. Stat. Mech. Theory Exp., (2013), 08014. doi: 10.1088/1742-5468/2013/08/p08014.  Google Scholar

[23]

T. Saha and M. Bandyopahyay, Dynamical analysis of toxin producing phytoplankton-zooplankton interactions, Nonlinear Anal. Real World Appl., 10 (2009), 314-332.  doi: 10.1016/j.nonrwa.2007.09.001.  Google Scholar

[24]

Q. Song, R. Yang, C. Zhang and L. Tang, Bifurcation Analysis of a Diffusive Predator-Prey Model with Monod-Haldane Functional Response, Int. J. Bifurcat. Chaos, 29 (2019), 1950152. doi: 10.1142/S0218127419501529.  Google Scholar

[25]

W. WangS. LiuD. Tian and D. Wang, Pattern dynamics in a toxin-producing phytoplankton-zooplankton model with additional food, Nonlinear Dyn., 94 (2018), 211-228.   Google Scholar

[26]

R. Yang and C. Zhang, Dynamics in a diffusive predator-prey system with a constant prey refuge and delay, Nonlinear Anal. Real World Appl., 31 (2016), 1-22. doi: 10.1016/j.nonrwa.2016.01.005.  Google Scholar

[27]

X. YuS. Yuan and T. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment, Appl. Math. Comput., 347 (2019), 249-264.  doi: 10.1016/j.amc.2018.11.005.  Google Scholar

[28]

D. Zhang and R. Liu, Dynamical transition for S-K-T biological competing model with cross-diffusion, Math. Methods Appl. Sci., 41 (2018), 4641-4658.  doi: 10.1002/mma.4919.  Google Scholar

[29]

W. Zheng and J. Sugie, Global asymptotic stability and equiasymptotic stability for time-varying phytoplankton-zooplankton-fish system, Nonlinear Anal. Real World Appl., 46 (2019), 116-136.  doi: 10.1016/j.nonrwa.2018.09.015.  Google Scholar

Figure 1.  The topological structure of phase portrait of continuous transition as control parameter $ \Lambda>\Lambda_{c} $
Figure 2.  The topological structure of phase portrait of continuous transition as control parameter $ \Lambda<\Lambda_{c} $
Figure 3.  The topological structure of phase portrait of jump transition as control parameter $ \Lambda<\Lambda_{c} $
Figure 4.  The topological structure of phase portrait of jump transition as control parameter $ \Lambda>\Lambda_{c} $
Figure 5.  The graph of critical parameter $ \Lambda_{c} $ and $ \lambda_{c} $ as $ n\in [0.1,1.5] $ and $ d\in [6,13] $
Figure 6.  The regions separating two types of transitions. Region A, continuous transitions from a real simple eigenvalue; Region B, jump transitions from a pair of simple complex eigenvalues
Figure 7.  The numerical solutions $ u_{1} $ and $ u_{2} $ at time T = 600. The parameter $ \lambda = 0.52 $
Figure 8.  The numerical solutions $ u_{1} $ and $ u_{2} $ at time T = 600. The parameter $ \lambda = 0.58 $
[1]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[2]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[3]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[4]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[5]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[6]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[7]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[8]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[9]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[10]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[11]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[12]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[13]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[14]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[15]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[16]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[17]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[18]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[19]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[20]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (118)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]