doi: 10.3934/cpaa.2020277

On the Cahn-Hilliard equation with mass source for biological applications

1. 

Lebanese International University, School of Arts and Sciences, Department of Mathematics and Physics, Bekaa campus, Lebanon

2. 

Lebanese University, Faculty of Sciences, Department of Mathematics, Houch el Oumara, Zahle, Lebanon

3. 

Politehnica University of Bucharest, Splaiul Independentei 313, 060042, Bucharest, Romania

* Corresponding author

Received  December 2019 Revised  September 2020 Published  December 2020

This article deals with some generalizations of the Cahn–Hilliard equation with mass source endowed with Neumann boundary conditions. This equation has many applications in real life e.g. in biology and image inpainting. The first part of this article, discusses the stationary problem of the Cahn–Hilliard equation with mass source. We prove the existence of a unique solution of the associated stationary problem. Then, in the latter part of this article, we consider the evolution problem of the Cahn–Hilliard equation with mass source. We construct a numerical scheme of the model based on a finite element discretization in space and backward Euler scheme in time. Furthermore, after obtaining some error estimates on the numerical solution, we prove that the semi discrete scheme converges to the continuous problem. In addition, we prove the stability of our scheme which allows us to obtain the convergence of the fully discrete problem to the semi discrete one. Finally, we perform the numerical simulations that confirm the theoretical results and demonstrate the performance of our scheme for cancerous tumor growth and image inpainting.

Citation: Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020277
References:
[1]

A. C. AristotelousO. A. Karakashian and S. M. Wise, Adaptive, second order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source, IMA J. Numer. Anal, 35 (2015), 1167-1198.  doi: 10.1093/imanum/dru035.  Google Scholar

[2]

A. BertozziS. Esedoglu and A. Gillette, Inpainting of binary images using the Cahn–Hilliard equation, IEEE Trans. Imaging Proc., 16 (2007), 285-291.  doi: 10.1109/TIP.2006.887728.  Google Scholar

[3]

A. BertozziS. Esedoglu and A. Gillette, Analysis of a two-scale Cahn–Hilliard model for binary image inpainting, Multiscale Model. Simul., 6 (2007), 913-936.  doi: 10.1137/060660631.  Google Scholar

[4]

M. BurgerL. He and C. Schönlieb, Cahn–Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imaging Sci., 3 (2009), 1129-1167.  doi: 10.1137/080728548.  Google Scholar

[5]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[6]

L. CherfilsH. Fakih and A. Miranville, Finite-dimensional attractors for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation in image inpainting, Inv. Prob. Imaging, 9 (2015), 105-125.  doi: 10.3934/ipi.2015.9.105.  Google Scholar

[7]

L. CherfilsH. Fakih and A. Miranville, On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic nonlinear terms, SIAM J. Imag. Sci., 8 (2015), 1123-1140.  doi: 10.1137/140985627.  Google Scholar

[8]

L. CherfilsH. Fakih and A. Miranville, A Cahn–Hilliard system with a fidelity term for color image inpainting, J. Math. Imaging Vis., 54 (2016), 117-131.  doi: 10.1007/s10851-015-0593-9.  Google Scholar

[9]

L. CherfilsH. Fakih and A. Miranville, A complex version of the Cahn-Hilliard equation for grayscale image inpainting, J. Multiscale Model. Simul., 15 (2017), 575-605.  doi: 10.1137/15M1040177.  Google Scholar

[10]

L. CherfilsA. Miranville and S. Zelik, The Cahn–Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.  doi: 10.1007/s00032-011-0165-4.  Google Scholar

[11]

L. CherfilsA. Miranville and S. Zelik, On a generalized Cahn–Hilliard equation with biological applications, Discrete Cont. Dyn.-B, 19 (2014), 2013-2026.  doi: 10.3934/dcdsb.2014.19.2013.  Google Scholar

[12]

L. CherfilsM. Petcu and M. Pierre, A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions, Discrete Cont. Dyn. S., 27 (2010), 1511-1533.  doi: 10.3934/dcds.2010.27.1511.  Google Scholar

[13]

I. C. DolcettaS. F. Vita and R. March, Area-preserving curve-shortening flows: from phase separation to image processing, Interface. Free Bound., 4 (2002), 325-343.  doi: 10.4171/IFB/64.  Google Scholar

[14]

C. M. ElliottD. A. French and F. A. Milner, A second order splitting method for the Cahn–Hilliard equation, Numer. Math., 54 (1989), 575-590.  doi: 10.1007/BF01396363.  Google Scholar

[15]

A. Ern and J. L. Guermond, Elements finis: theorie, applications, mise en oeuvre, Springer-Verlag, Berlin, 2002.  Google Scholar

[16]

H. Fakih, Asymptotic behavior of a generalized Cahn–Hilliard, equation with a mass source, Appl. Anal., 96 (2016), 324-348.  doi: 10.1080/00036811.2015.1135241.  Google Scholar

[17]

H. Fakih, A Cahn–Hilliard equation with a proliferation term for biological and chemical applications, Asympt. Anal., 94 (2015), 71-104.  doi: 10.3233/ASY-151306.  Google Scholar

[18]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[19]

E. Khain and L. M. Sander, A generalized Cahn–Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 51-129.   Google Scholar

[20]

A. Miranville, Asymptotic behavior of the Cahn–Hilliard–Oono equation, J. Appl. Anal. Comp., 1 (2011), 523-536.   Google Scholar

[21]

A. Miranville, Asymptotic behavior of a generalized Cahn–Hilliard equation with a proliferation, Appl. Anal., 92 (2013), 1308-1321.  doi: 10.1080/00036811.2012.671301.  Google Scholar

[22]

A. Miranville, Existence of solutions to a Cahn–Hilliard type equation with a logarithmic nonlinear term, Mediterr. J. Math., 16 (2019), 1-18.  doi: 10.1007/s00009-018-1284-8.  Google Scholar

[23]

A. Miranville, The Cahn–Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479-544.   Google Scholar

[24]

A. Novick-Cohen and L. A. Segal, Nonlinear Cahn–Hiliard equation, Proc. Roy. Soc. London Ser. A, 422 (1989), 261-278.   Google Scholar

[25]

Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839.   Google Scholar

[26]

C. B. Schönlieb and A. Bertozzi, Unconditionally stable schemes for higher order inpainting, Commun. Math. Sci., 9 (2011), 413-457.   Google Scholar

[27]

S. Villain-Guillot, Phases modulées et dynamique de Cahn–Hilliard, Habilitation thesis, Habilitation thesis, Université Bordeaux 1, 2010. Google Scholar

show all references

References:
[1]

A. C. AristotelousO. A. Karakashian and S. M. Wise, Adaptive, second order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source, IMA J. Numer. Anal, 35 (2015), 1167-1198.  doi: 10.1093/imanum/dru035.  Google Scholar

[2]

A. BertozziS. Esedoglu and A. Gillette, Inpainting of binary images using the Cahn–Hilliard equation, IEEE Trans. Imaging Proc., 16 (2007), 285-291.  doi: 10.1109/TIP.2006.887728.  Google Scholar

[3]

A. BertozziS. Esedoglu and A. Gillette, Analysis of a two-scale Cahn–Hilliard model for binary image inpainting, Multiscale Model. Simul., 6 (2007), 913-936.  doi: 10.1137/060660631.  Google Scholar

[4]

M. BurgerL. He and C. Schönlieb, Cahn–Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imaging Sci., 3 (2009), 1129-1167.  doi: 10.1137/080728548.  Google Scholar

[5]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[6]

L. CherfilsH. Fakih and A. Miranville, Finite-dimensional attractors for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation in image inpainting, Inv. Prob. Imaging, 9 (2015), 105-125.  doi: 10.3934/ipi.2015.9.105.  Google Scholar

[7]

L. CherfilsH. Fakih and A. Miranville, On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic nonlinear terms, SIAM J. Imag. Sci., 8 (2015), 1123-1140.  doi: 10.1137/140985627.  Google Scholar

[8]

L. CherfilsH. Fakih and A. Miranville, A Cahn–Hilliard system with a fidelity term for color image inpainting, J. Math. Imaging Vis., 54 (2016), 117-131.  doi: 10.1007/s10851-015-0593-9.  Google Scholar

[9]

L. CherfilsH. Fakih and A. Miranville, A complex version of the Cahn-Hilliard equation for grayscale image inpainting, J. Multiscale Model. Simul., 15 (2017), 575-605.  doi: 10.1137/15M1040177.  Google Scholar

[10]

L. CherfilsA. Miranville and S. Zelik, The Cahn–Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.  doi: 10.1007/s00032-011-0165-4.  Google Scholar

[11]

L. CherfilsA. Miranville and S. Zelik, On a generalized Cahn–Hilliard equation with biological applications, Discrete Cont. Dyn.-B, 19 (2014), 2013-2026.  doi: 10.3934/dcdsb.2014.19.2013.  Google Scholar

[12]

L. CherfilsM. Petcu and M. Pierre, A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions, Discrete Cont. Dyn. S., 27 (2010), 1511-1533.  doi: 10.3934/dcds.2010.27.1511.  Google Scholar

[13]

I. C. DolcettaS. F. Vita and R. March, Area-preserving curve-shortening flows: from phase separation to image processing, Interface. Free Bound., 4 (2002), 325-343.  doi: 10.4171/IFB/64.  Google Scholar

[14]

C. M. ElliottD. A. French and F. A. Milner, A second order splitting method for the Cahn–Hilliard equation, Numer. Math., 54 (1989), 575-590.  doi: 10.1007/BF01396363.  Google Scholar

[15]

A. Ern and J. L. Guermond, Elements finis: theorie, applications, mise en oeuvre, Springer-Verlag, Berlin, 2002.  Google Scholar

[16]

H. Fakih, Asymptotic behavior of a generalized Cahn–Hilliard, equation with a mass source, Appl. Anal., 96 (2016), 324-348.  doi: 10.1080/00036811.2015.1135241.  Google Scholar

[17]

H. Fakih, A Cahn–Hilliard equation with a proliferation term for biological and chemical applications, Asympt. Anal., 94 (2015), 71-104.  doi: 10.3233/ASY-151306.  Google Scholar

[18]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[19]

E. Khain and L. M. Sander, A generalized Cahn–Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 51-129.   Google Scholar

[20]

A. Miranville, Asymptotic behavior of the Cahn–Hilliard–Oono equation, J. Appl. Anal. Comp., 1 (2011), 523-536.   Google Scholar

[21]

A. Miranville, Asymptotic behavior of a generalized Cahn–Hilliard equation with a proliferation, Appl. Anal., 92 (2013), 1308-1321.  doi: 10.1080/00036811.2012.671301.  Google Scholar

[22]

A. Miranville, Existence of solutions to a Cahn–Hilliard type equation with a logarithmic nonlinear term, Mediterr. J. Math., 16 (2019), 1-18.  doi: 10.1007/s00009-018-1284-8.  Google Scholar

[23]

A. Miranville, The Cahn–Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479-544.   Google Scholar

[24]

A. Novick-Cohen and L. A. Segal, Nonlinear Cahn–Hiliard equation, Proc. Roy. Soc. London Ser. A, 422 (1989), 261-278.   Google Scholar

[25]

Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839.   Google Scholar

[26]

C. B. Schönlieb and A. Bertozzi, Unconditionally stable schemes for higher order inpainting, Commun. Math. Sci., 9 (2011), 413-457.   Google Scholar

[27]

S. Villain-Guillot, Phases modulées et dynamique de Cahn–Hilliard, Habilitation thesis, Habilitation thesis, Université Bordeaux 1, 2010. Google Scholar

Figure 1.  (a) Initial datum at $ t = 0 $. (b) Solution after $ 2000 $ iterations. (c) Solution after $ 3000 $ iterations. (d) Solution after $ 4000 $ iterations. (e) Solution after $ 5000 $ iterations. (f) Solution after $ 6000 $ iterations. (g) Solution after $ 8000 $ iterations. (h) Solution after $ 9000 $ iterations
Figure 2.  (a) initial image. (b) mask. (c) Inpainting result
Figure 3.  (a) original image. (b) mask. (c) Inpainting result
[1]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[2]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[3]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[4]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[5]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[6]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[7]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[8]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[9]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[10]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[13]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[14]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[15]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[16]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[19]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[20]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (35)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]