February  2021, 20(2): 511-532. doi: 10.3934/cpaa.2020278

Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line

1. 

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

2. 

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Peñalolén, Santiago, Chile

* Corresponding author

Received  March 2020 Revised  September 2020 Published  February 2021 Early access  December 2020

Fund Project: This work was supported by FONDECYT Regular 1170968 and FONDECYT Regular 1200653

A linear system of difference equations and a nonlinear perturbation are considered, we obtain sufficient conditions to ensure the topological equivalence between them, namely, the linear part satisfies a property of dichotomy on the positive half–line while the nonlinearity has some boundedness and Lipschitz conditions. In addition, we provide new characterizations for the resulting homeomorphisms. When the linear system is asymptotically stable and the nonlinear system has a unique equilibrium, we deduce sharper results for the smoothness of the topological equivalence. Finally, we study the asymptotic stability and its preservation by topological equivalence.

Citation: Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278
References:
[1]

B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, in New Trends in Difference Equations, London, 2002.  Google Scholar

[2]

M.G. Babutia and M. Megan, Nonuniform exponential dichotomy for discrete dynamical systems in Banach spaces, Mediterr. J. Math., 13 (2016) 1653–1667. doi: 10.1007/s00009-015-0605-4.  Google Scholar

[3]

L. Barreira and C. Valls, A Grobman–Hartman theorem for nonuniformly hyperbolic dynamics, J. Differ. Equ., 228 (2006), 285-310.  doi: 10.1016/j.jde.2006.04.001.  Google Scholar

[4]

L. BarreiraM. FanC. Valls and J. Zhang, Robustness of nonuniform polynomial dichotomies for difference equations, Topol. Methods Nonlinear Anal., 37 (2011), 357-376.   Google Scholar

[5]

L. BarreiraL. H. Popescu and C. Valls, Nonautonomous dynamics with discrete time and topological equivalence, Z. Anal. Anwend., 35 (2016), 21-39.  doi: 10.4171/ZAA/1553.  Google Scholar

[6]

A. Bento and C. Silva, Nonuniform $(\mu, \nu)$–dichotomies and local dynamics of difference equations, Nonlinear Anal., 75 (2012), 78-90.  doi: 10.1016/j.na.2011.08.008.  Google Scholar

[7]

Á. Castañeda and G. Robledo, A topological equivalence result for a family of nonlinear difference systems having generalized exponential dichotomy, J. Difference Equ. Appl., 22 (2016), 1271-1291.  doi: 10.1080/10236198.2016.1192161.  Google Scholar

[8]

Á. Castañeda and G. Robledo, Dichotomy spectrum and almost topological conjugacy on nonautonomous unbounded difference systems, Discrete Contin. Dyn. Syst., 38 (2018), 2287-2304.  doi: 10.3934/dcds.2018094.  Google Scholar

[9]

Á. Castañeda, P. Monzón and G. Robledo, Smoothness of Topological Equivalence on the Half Line for Nonautonomous Systems, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 2484-2502. doi: 10.1017/prm.2019.32.  Google Scholar

[10]

J. Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013), 1031-1047.  doi: 10.1016/j.bulsci.2013.03.003.  Google Scholar

[11]

Ch. V Coffman and J. J. Schäfer, Dichotomies for linear difference equations, Math. Ann., 172 (1967), 139-166.  doi: 10.1007/BF01350095.  Google Scholar

[12]

W. A. Coppel, Dichotomies in Stability Theory, Springer, Verlag, Berlin, 1978.  Google Scholar

[13]

V. Crai and M. Aldescu, On $(h, k)$–dichotomy of linear discrete-time systems in Banach spaces, Difference equations, discrete dynamical systems and applications, Springer Proc. Math. Stat., 287, Springer, Cham, 2019,257–271. doi: 10.1007/978-3-030-20016-9_10.  Google Scholar

[14]

D. Dragi$\check{c}$evićW. Zhang and W. Zhang, Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy, Math. Z., 292 (2019), 1175-1193.  doi: 10.1007/s00209-018-2134-x.  Google Scholar

[15]

S. Elaydi, An Introduction to Difference Equations, Springer, New York, 2005.  Google Scholar

[16]

D. M. Grobman, Homeomorphism of systems of differential equations, Dokl. Akad. Nauk. SSSR, 128 (1959), 880-881.   Google Scholar

[17]

P. Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana (2), 5 (1960), 220-241.   Google Scholar

[18]

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, Springer, Heidelberg, Berlin, 2010.  Google Scholar

[19]

J. Kurzweil and G. Papaschinopoulos, Topological equivalence and structural stability for linear difference equations, J. Differ. Equ., 89 (1991), 89-94.  doi: 10.1016/0022-0396(91)90112-M.  Google Scholar

[20]

Z. Lin and Y. X. Lin, Linear Systems Exponential Dichotomy and Structure of Sets of Hyperbolic Points, World Scientific, Singapore, 2000. doi: 10.1142/9789812793027.  Google Scholar

[21]

J. Palis, On the local structure of hyperbolic points in Banach space, An. Acad. Brasil. Ci., 40 (1968), 263-266.   Google Scholar

[22]

K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.  doi: 10.1016/0022-247X(73)90245-X.  Google Scholar

[23]

G. Papaschinopoulos, Criteria for an exponential dichotomy of difference equations, Czechoslovak Math. J., 35 (1985), 295-299.   Google Scholar

[24]

G. Papaschinopoulos and G. Schinas, Structural stability via the density of a class of linear discrete systems, J. Math. Anal. Appl., 127 (1987), 530-539.  doi: 10.1016/0022-247X(87)90127-2.  Google Scholar

[25]

G. Papaschinopoulos, Some roughness results concerning reducibility for linear difference equations, Internat. J. Math. Sci., 11 (1988), 793-804.  doi: 10.1155/S0161171288000961.  Google Scholar

[26]

G. Papaschinopoulos, A linearization result for a differential equation with piecewise constant argument, Analysis, 16 (1996), 161-170.  doi: 10.1524/anly.1996.16.2.161.  Google Scholar

[27]

R. Plastock, Homeomorphisms between Banach spaces, T. Am. Math. Soc., 200 (1974), 169-183.  doi: 10.2307/1997252.  Google Scholar

[28]

J. Popenda, Gronwall type inequalities, Z. Angew. Math. Mech., 75 (1995), 669-677.  doi: 10.1002/zamm.19950750903.  Google Scholar

[29]

C. Pugh, On a theorem of P. Hartman, Amer. J. Math., 91 (1969), 363-367.  doi: 10.2307/2373513.  Google Scholar

[30]

V. Rayskin, $\alpha-$H$\ddot{o}$lder linearization, J. Differ. Equ., 147 (1998), 271-284.  doi: 10.1006/jdeq.1997.3410.  Google Scholar

[31]

A. Reinfelds, Global topological equivalence of nonlinear flows, Differencial'nye Uravnenija, 10 (1972), 1901-1903.   Google Scholar

[32]

A. Reinfelds, Grobman's–Hartman's theorem for time-dependent difference equations, Math. Differ. equ. (Russian), 9-13, Latv. Univ. Zinat. Raksti, 605, Latv. Univ., Riga, 1997.  Google Scholar

[33]

A. Reinfelds and D. $\check{S}$teinberga., Dynamical equivalence of quasilinear equations, Internat. J. Pure Appl. Math. 98 (2015), 355-364. doi: 10.1515/tmmp-2015-0035.  Google Scholar

[34]

J. Schinas and G. Papaschinopoulos, Topological equivalence via dichotomies and Lyapunov functions, Boll. Un. Mat. Ital. C (6), 4 (1985), 61-70.   Google Scholar

[35]

W. Zhou and W. Zhang, Admissibility and roughness of nonuniform exponential dichotomies for difference equations, J. Funct. Anal., 271 (2016), 1087-1129.  doi: 10.1016/j.jfa.2016.06.005.  Google Scholar

show all references

References:
[1]

B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, in New Trends in Difference Equations, London, 2002.  Google Scholar

[2]

M.G. Babutia and M. Megan, Nonuniform exponential dichotomy for discrete dynamical systems in Banach spaces, Mediterr. J. Math., 13 (2016) 1653–1667. doi: 10.1007/s00009-015-0605-4.  Google Scholar

[3]

L. Barreira and C. Valls, A Grobman–Hartman theorem for nonuniformly hyperbolic dynamics, J. Differ. Equ., 228 (2006), 285-310.  doi: 10.1016/j.jde.2006.04.001.  Google Scholar

[4]

L. BarreiraM. FanC. Valls and J. Zhang, Robustness of nonuniform polynomial dichotomies for difference equations, Topol. Methods Nonlinear Anal., 37 (2011), 357-376.   Google Scholar

[5]

L. BarreiraL. H. Popescu and C. Valls, Nonautonomous dynamics with discrete time and topological equivalence, Z. Anal. Anwend., 35 (2016), 21-39.  doi: 10.4171/ZAA/1553.  Google Scholar

[6]

A. Bento and C. Silva, Nonuniform $(\mu, \nu)$–dichotomies and local dynamics of difference equations, Nonlinear Anal., 75 (2012), 78-90.  doi: 10.1016/j.na.2011.08.008.  Google Scholar

[7]

Á. Castañeda and G. Robledo, A topological equivalence result for a family of nonlinear difference systems having generalized exponential dichotomy, J. Difference Equ. Appl., 22 (2016), 1271-1291.  doi: 10.1080/10236198.2016.1192161.  Google Scholar

[8]

Á. Castañeda and G. Robledo, Dichotomy spectrum and almost topological conjugacy on nonautonomous unbounded difference systems, Discrete Contin. Dyn. Syst., 38 (2018), 2287-2304.  doi: 10.3934/dcds.2018094.  Google Scholar

[9]

Á. Castañeda, P. Monzón and G. Robledo, Smoothness of Topological Equivalence on the Half Line for Nonautonomous Systems, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 2484-2502. doi: 10.1017/prm.2019.32.  Google Scholar

[10]

J. Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013), 1031-1047.  doi: 10.1016/j.bulsci.2013.03.003.  Google Scholar

[11]

Ch. V Coffman and J. J. Schäfer, Dichotomies for linear difference equations, Math. Ann., 172 (1967), 139-166.  doi: 10.1007/BF01350095.  Google Scholar

[12]

W. A. Coppel, Dichotomies in Stability Theory, Springer, Verlag, Berlin, 1978.  Google Scholar

[13]

V. Crai and M. Aldescu, On $(h, k)$–dichotomy of linear discrete-time systems in Banach spaces, Difference equations, discrete dynamical systems and applications, Springer Proc. Math. Stat., 287, Springer, Cham, 2019,257–271. doi: 10.1007/978-3-030-20016-9_10.  Google Scholar

[14]

D. Dragi$\check{c}$evićW. Zhang and W. Zhang, Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy, Math. Z., 292 (2019), 1175-1193.  doi: 10.1007/s00209-018-2134-x.  Google Scholar

[15]

S. Elaydi, An Introduction to Difference Equations, Springer, New York, 2005.  Google Scholar

[16]

D. M. Grobman, Homeomorphism of systems of differential equations, Dokl. Akad. Nauk. SSSR, 128 (1959), 880-881.   Google Scholar

[17]

P. Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana (2), 5 (1960), 220-241.   Google Scholar

[18]

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, Springer, Heidelberg, Berlin, 2010.  Google Scholar

[19]

J. Kurzweil and G. Papaschinopoulos, Topological equivalence and structural stability for linear difference equations, J. Differ. Equ., 89 (1991), 89-94.  doi: 10.1016/0022-0396(91)90112-M.  Google Scholar

[20]

Z. Lin and Y. X. Lin, Linear Systems Exponential Dichotomy and Structure of Sets of Hyperbolic Points, World Scientific, Singapore, 2000. doi: 10.1142/9789812793027.  Google Scholar

[21]

J. Palis, On the local structure of hyperbolic points in Banach space, An. Acad. Brasil. Ci., 40 (1968), 263-266.   Google Scholar

[22]

K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.  doi: 10.1016/0022-247X(73)90245-X.  Google Scholar

[23]

G. Papaschinopoulos, Criteria for an exponential dichotomy of difference equations, Czechoslovak Math. J., 35 (1985), 295-299.   Google Scholar

[24]

G. Papaschinopoulos and G. Schinas, Structural stability via the density of a class of linear discrete systems, J. Math. Anal. Appl., 127 (1987), 530-539.  doi: 10.1016/0022-247X(87)90127-2.  Google Scholar

[25]

G. Papaschinopoulos, Some roughness results concerning reducibility for linear difference equations, Internat. J. Math. Sci., 11 (1988), 793-804.  doi: 10.1155/S0161171288000961.  Google Scholar

[26]

G. Papaschinopoulos, A linearization result for a differential equation with piecewise constant argument, Analysis, 16 (1996), 161-170.  doi: 10.1524/anly.1996.16.2.161.  Google Scholar

[27]

R. Plastock, Homeomorphisms between Banach spaces, T. Am. Math. Soc., 200 (1974), 169-183.  doi: 10.2307/1997252.  Google Scholar

[28]

J. Popenda, Gronwall type inequalities, Z. Angew. Math. Mech., 75 (1995), 669-677.  doi: 10.1002/zamm.19950750903.  Google Scholar

[29]

C. Pugh, On a theorem of P. Hartman, Amer. J. Math., 91 (1969), 363-367.  doi: 10.2307/2373513.  Google Scholar

[30]

V. Rayskin, $\alpha-$H$\ddot{o}$lder linearization, J. Differ. Equ., 147 (1998), 271-284.  doi: 10.1006/jdeq.1997.3410.  Google Scholar

[31]

A. Reinfelds, Global topological equivalence of nonlinear flows, Differencial'nye Uravnenija, 10 (1972), 1901-1903.   Google Scholar

[32]

A. Reinfelds, Grobman's–Hartman's theorem for time-dependent difference equations, Math. Differ. equ. (Russian), 9-13, Latv. Univ. Zinat. Raksti, 605, Latv. Univ., Riga, 1997.  Google Scholar

[33]

A. Reinfelds and D. $\check{S}$teinberga., Dynamical equivalence of quasilinear equations, Internat. J. Pure Appl. Math. 98 (2015), 355-364. doi: 10.1515/tmmp-2015-0035.  Google Scholar

[34]

J. Schinas and G. Papaschinopoulos, Topological equivalence via dichotomies and Lyapunov functions, Boll. Un. Mat. Ital. C (6), 4 (1985), 61-70.   Google Scholar

[35]

W. Zhou and W. Zhang, Admissibility and roughness of nonuniform exponential dichotomies for difference equations, J. Funct. Anal., 271 (2016), 1087-1129.  doi: 10.1016/j.jfa.2016.06.005.  Google Scholar

[1]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[2]

Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161

[3]

Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 221-238. doi: 10.3934/dcdss.2009.2.221

[4]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247

[5]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[6]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[7]

Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094

[8]

Kengo Matsumoto. Continuous orbit equivalence of topological Markov shifts and KMS states on Cuntz–Krieger algebras. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5897-5909. doi: 10.3934/dcds.2020251

[9]

Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575

[10]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[11]

Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098

[12]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[13]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[14]

Luis Barreira, Claudia Valls. Nonuniform exponential dichotomies and admissibility. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 39-53. doi: 10.3934/dcds.2011.30.39

[15]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[16]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[17]

Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537

[18]

Bi Ping, Maoan Han. Oscillation of second order difference equations with advanced argument. Conference Publications, 2003, 2003 (Special) : 108-112. doi: 10.3934/proc.2003.2003.108

[19]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2037-2053. doi: 10.3934/dcdsb.2020365

[20]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (72)
  • HTML views (101)
  • Cited by (0)

[Back to Top]