-
Previous Article
A unique continuation property for a class of parabolic differential inequalities in a bounded domain
- CPAA Home
- This Issue
-
Next Article
Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line
Homogenization and singular perturbation in porous media
Departmant of mathematics, University of Zagreb, Bijenička 30, 10000, Zagreb, Croatia |
We study a Dirichlet problem in periodic porous medium depending on two small parameters, the hydraulic permeability of the porous inclusions $ \delta $ and the period $ \varepsilon $. We study the situation as $ \delta\to 0 \;, \; \varepsilon\to 0 $ and $ \varepsilon \to 0 \;, \; \delta\to 0 $ and prove that the two limits do not commute.
References:
[1] |
G. Allaire,
Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
G. Allaire,
Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Ⅰ. Abstract framework, a volume distribution of holes, Arch. Ration. Mech. Anal., 113 (1990), 209-259.
doi: 10.1007/BF00375065. |
[3] |
T. Arbogast, J. Jr. Douglas and U. Hornung,
Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.
doi: 10.1137/0521046. |
[4] |
J. M. Arrieta and M. Pereira,
Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl., 96 (2011), 29-57.
doi: 10.1016/j.matpur.2011.02.003. |
[5] |
N. S. Bakhvalov and G. Panasenko, Homogenisation: Averaging Processes in Porous Media Periodic, Springer, 1989.
doi: 10.1007/978-94-009-2247-1. |
[6] |
F. A. Bornemann, Homogenization in Time of Singularly Perturbed Conservative Mechanical Systems, Springer, 1998.
doi: 10.1007/BFb0092091. |
[7] |
A. Bourgeat, E. Marušić-Paloka and A. Mikelić,
Effective Fluid Flow in a Porous Medium Containing a Thin Fissure, Asymptotic Analysis, 11 (1995), 241-262.
|
[8] |
A. Bourgeat, S. Luckhaus and A. Mikelić,
A rigorous result for a double porosity model of immiscible two-phase flows, SIAM J. Math. Anal., 27 (1996), 1520-1543.
doi: 10.1137/S0036141094276457. |
[9] |
D. Caillerie,
Homogénéisation des équations de la diffusion stationnaire dans les domaines cylindriques aplatis, RAIRO Analyse Numeérique, 15 (1981), 295-319.
|
[10] |
D. Caillerie, Thin elastic and perodic plates, Math. Methods Appl. Sci., 6 (1984), 159-191.
doi: 10.1002/mma.1670060112. |
[11] |
G. S. Chechkin,
Averaging of boundary value problems with a singular perturbation of the boundary conditions, Mat. Sb., 186 (1993), 191-222.
doi: 10.1070/SM1994v079n01ABEH003608. |
[12] |
D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Springer, 1999.
doi: 10.1007/978-1-4612-2158-6. |
[13] |
D. Cioranescu, P. Donato and R. Zaki,
The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2016), 467-496.
|
[14] |
A. Damlamian and M. Vogelius,
Homogenization limits of diffusion equations in thin domains, Mod. Math. An. Num. M2AN, 22 (1988), 53-74.
doi: 10.1051/m2an/1988220100531. |
[15] |
A. Damlamian and M. Vogelius,
Homogenization limits of the eequations of elasticity in thin domains, SIAM J. Math. Anal., 18 (1987), 435-451.
doi: 10.1137/0518034. |
[16] |
T. Fratrović and E. Marušić-Paloka,
Nonlinear Brinkman-type law as a critical case in the polymer fluid filtration, Appl. Anal., 95 (2016), 562-583.
doi: 10.1080/00036811.2015.1022155. |
[17] |
M. Jurak and Z. Tutek,
A one-dimensional model of homogenized rod, Glas. Mat., 24 (1989), 271-290.
|
[18] |
R. Kohn and M. Vogelius,
A new model for thin plates with rapidly varying thickness, Ⅱ a convergence proof, Quart. Appl. Math., 43 (1985), 1-22.
doi: 10.1090/qam/782253. |
[19] |
S. Marušić,
A note on permeability for a network of thin channels, Glas. Mat., 39 (2004), 339-346.
doi: 10.3336/gm.39.2.16. |
[20] |
E. Marušić-Paloka and S. Marušić,
Computation of the permeability tensor for the fluid flow through a periodic net of thin channels, Appl. Anal., 64 (1997), 27-37.
doi: 10.1080/00036819708840521. |
[21] |
E. Marušić-Paloka, I. Pažanin and S. Marušić,
Comparison between Darcy and Brinkman laws in a fracture, Appl. Math. Comput., 218 (2012), 7538-7545.
doi: 10.1016/j.amc.2012.01.021. |
[22] |
G. A. Nguetseng,
A General convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[23] |
E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory, Springer, 1980. |
[24] |
H. Kim and H. Shahgholian,
Homogenization of a singular perturbation problem, J. Math. Sci., 243 (2019), 163-176.
doi: 10.1007/s10958-019-04472-x. |
[25] |
P. Shi, A. Spagnuolo and S. Wright,
Reiterated Homogenization and the Double-Porosity Model, Transport Porous Med., 59 (2005), 73-95.
doi: 10.1007/s11242-004-1121-3. |
show all references
References:
[1] |
G. Allaire,
Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
G. Allaire,
Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Ⅰ. Abstract framework, a volume distribution of holes, Arch. Ration. Mech. Anal., 113 (1990), 209-259.
doi: 10.1007/BF00375065. |
[3] |
T. Arbogast, J. Jr. Douglas and U. Hornung,
Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.
doi: 10.1137/0521046. |
[4] |
J. M. Arrieta and M. Pereira,
Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl., 96 (2011), 29-57.
doi: 10.1016/j.matpur.2011.02.003. |
[5] |
N. S. Bakhvalov and G. Panasenko, Homogenisation: Averaging Processes in Porous Media Periodic, Springer, 1989.
doi: 10.1007/978-94-009-2247-1. |
[6] |
F. A. Bornemann, Homogenization in Time of Singularly Perturbed Conservative Mechanical Systems, Springer, 1998.
doi: 10.1007/BFb0092091. |
[7] |
A. Bourgeat, E. Marušić-Paloka and A. Mikelić,
Effective Fluid Flow in a Porous Medium Containing a Thin Fissure, Asymptotic Analysis, 11 (1995), 241-262.
|
[8] |
A. Bourgeat, S. Luckhaus and A. Mikelić,
A rigorous result for a double porosity model of immiscible two-phase flows, SIAM J. Math. Anal., 27 (1996), 1520-1543.
doi: 10.1137/S0036141094276457. |
[9] |
D. Caillerie,
Homogénéisation des équations de la diffusion stationnaire dans les domaines cylindriques aplatis, RAIRO Analyse Numeérique, 15 (1981), 295-319.
|
[10] |
D. Caillerie, Thin elastic and perodic plates, Math. Methods Appl. Sci., 6 (1984), 159-191.
doi: 10.1002/mma.1670060112. |
[11] |
G. S. Chechkin,
Averaging of boundary value problems with a singular perturbation of the boundary conditions, Mat. Sb., 186 (1993), 191-222.
doi: 10.1070/SM1994v079n01ABEH003608. |
[12] |
D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Springer, 1999.
doi: 10.1007/978-1-4612-2158-6. |
[13] |
D. Cioranescu, P. Donato and R. Zaki,
The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2016), 467-496.
|
[14] |
A. Damlamian and M. Vogelius,
Homogenization limits of diffusion equations in thin domains, Mod. Math. An. Num. M2AN, 22 (1988), 53-74.
doi: 10.1051/m2an/1988220100531. |
[15] |
A. Damlamian and M. Vogelius,
Homogenization limits of the eequations of elasticity in thin domains, SIAM J. Math. Anal., 18 (1987), 435-451.
doi: 10.1137/0518034. |
[16] |
T. Fratrović and E. Marušić-Paloka,
Nonlinear Brinkman-type law as a critical case in the polymer fluid filtration, Appl. Anal., 95 (2016), 562-583.
doi: 10.1080/00036811.2015.1022155. |
[17] |
M. Jurak and Z. Tutek,
A one-dimensional model of homogenized rod, Glas. Mat., 24 (1989), 271-290.
|
[18] |
R. Kohn and M. Vogelius,
A new model for thin plates with rapidly varying thickness, Ⅱ a convergence proof, Quart. Appl. Math., 43 (1985), 1-22.
doi: 10.1090/qam/782253. |
[19] |
S. Marušić,
A note on permeability for a network of thin channels, Glas. Mat., 39 (2004), 339-346.
doi: 10.3336/gm.39.2.16. |
[20] |
E. Marušić-Paloka and S. Marušić,
Computation of the permeability tensor for the fluid flow through a periodic net of thin channels, Appl. Anal., 64 (1997), 27-37.
doi: 10.1080/00036819708840521. |
[21] |
E. Marušić-Paloka, I. Pažanin and S. Marušić,
Comparison between Darcy and Brinkman laws in a fracture, Appl. Math. Comput., 218 (2012), 7538-7545.
doi: 10.1016/j.amc.2012.01.021. |
[22] |
G. A. Nguetseng,
A General convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[23] |
E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory, Springer, 1980. |
[24] |
H. Kim and H. Shahgholian,
Homogenization of a singular perturbation problem, J. Math. Sci., 243 (2019), 163-176.
doi: 10.1007/s10958-019-04472-x. |
[25] |
P. Shi, A. Spagnuolo and S. Wright,
Reiterated Homogenization and the Double-Porosity Model, Transport Porous Med., 59 (2005), 73-95.
doi: 10.1007/s11242-004-1121-3. |
[1] |
Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337 |
[2] |
Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393 |
[3] |
Verena Bögelein, Frank Duzaar, Ugo Gianazza. Very weak solutions of singular porous medium equations with measure data. Communications on Pure and Applied Analysis, 2015, 14 (1) : 23-49. doi: 10.3934/cpaa.2015.14.23 |
[4] |
Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2401-2426. doi: 10.3934/dcdsb.2021137 |
[5] |
Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783 |
[6] |
Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure and Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623 |
[7] |
Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761 |
[8] |
Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123 |
[9] |
Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927 |
[10] |
Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183 |
[11] |
Zhilei Liang. On the critical exponents for porous medium equation with a localized reaction in high dimensions. Communications on Pure and Applied Analysis, 2012, 11 (2) : 649-658. doi: 10.3934/cpaa.2012.11.649 |
[12] |
Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003 |
[13] |
Edoardo Mainini. On the signed porous medium flow. Networks and Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525 |
[14] |
Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669 |
[15] |
Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93 |
[16] |
Liangwei Wang, Jingxue Yin, Chunhua Jin. $\omega$-limit sets for porous medium equation with initial data in some weighted spaces. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 223-236. doi: 10.3934/dcdsb.2013.18.223 |
[17] |
Ansgar Jüngel, Stefan Schuchnigg. A discrete Bakry-Emery method and its application to the porous-medium equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5541-5560. doi: 10.3934/dcds.2017241 |
[18] |
Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107 |
[19] |
Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665 |
[20] |
Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]