February  2021, 20(2): 547-558. doi: 10.3934/cpaa.2020280

A unique continuation property for a class of parabolic differential inequalities in a bounded domain

1. 

College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China

2. 

College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China

3. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA

* Corresponding author

Received  May 2020 Revised  September 2020 Published  February 2021 Early access  December 2020

Fund Project: Guojie Zheng is supported by the Natural Science Foundation of Henan Province (No. 202300410248) and the Natural Science Foundation of Henan Province (No. 2019PL15), and Taige Wang is supported by Faculty Development Fund granted by McMicken College of Arts and Sciences, University of Cincinnati

This article is concerned with a strong unique continuation property of a forward differential inequality abstracted from parabolic equations proposed on a convex domain $ \Omega $ prescribed with some regularity and growth conditions. Our results show that the value of the solutions can be determined uniquely by its value on an arbitrary open subset $ \omega $ in $ \Omega $ at any given positive time $ T $. We also derive the quantitative nature of this unique continuation, that is, the estimate of a $ L^2(\Omega) $ norm of the initial data, which is majorized by that of solution on the bounded open subset $ \omega $ at terminal moment $ t = T $.

Citation: Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280
References:
[1]

M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer, Tokyo, 2017. doi: 10.1007/978-4-431-56600-7.

[2]

T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépedantes, Ark. Mat., Astr. Fys., 26 (1939), 9pp.

[3]

G. Camliyurt and I. Kukavica, Quantitative unique continuation for a parabolic equation, Indiana Univ. Math. J., 67 (2018), 657-678. doi: 10.1512/iumj.2018.67.7283.

[4]

H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemann manifolds, Invent. Math., 93 (1988), 161-183. doi: 10.1007/BF01393691.

[5]

L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J., 104 (2000), 113-127. doi: 10.1215/S0012-7094-00-10415-2.

[6]

L. Escauriaza and F. J. Fernández, Unique continuation for parabolic operators, Ark. Mat., 41 (2003), 35-60. doi: 10.1007/BF02384566.

[7]

L. Escauriaza, F. J. Fernández and S. Vessella, Doubling properties of caloric functions, Appl. Anal., 85 (2006), 205-223. doi: 10.1080/00036810500277082.

[8]

N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268. doi: 10.1512/iumj.1986.35.35015.

[9]

D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schorodinger operators, Ann. Math., 121 (1985), 463-488. doi: 10.2307/1971205.

[10]

C. E. Kenig, Quantitative unique continuation, logarithmic convexity of Gaussian means and Hardy's uncertainty principle, Proc. Sympos. Pure Math., 79 (2008), 207{227. doi: 10.1090/pspum/079/2500494.

[11]

I. Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240. doi: 10.1215/S0012-7094-98-09111-6.

[12]

H. Koch and D. Tataru, Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Commun. PDE, 34 (2009), 305-366. doi: 10.1080/03605300902740395.

[13]

E. M. Landis and O. A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russ. Math. Surv+, 29 (1974), 195-212.

[14]

F. Lin, A uniqueness theorem for parabolic equations, Commun. Pure Appl. Math., 43 (1990), 127-136. doi: 10.1002/cpa.3160430105.

[15]

K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247. doi: 10.1016/j.jfa.2010.04.015.

[16]

C. Poon, Unique continuation for parabolic equations, Comm. PDE, 21 (1996), 521-539. doi: 10.1080/03605309608821195.

[17]

J. C. Saut and E. Scheurer, Unique continuation for evolution equations, J. Differ. Equ., 66 (1987), 118-137. doi: 10.1016/0022-0396(87)90043-X.

[18]

C. Sogge, A unique continuation theorem for second order parabolic differential operators, Ark. Mat., 28 (1990), 159-182. doi: 10.1007/BF02387373.

[19]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Prob., 25 (2009), 123013. doi: 10.1088/0266-5611/25/12/123013.

show all references

References:
[1]

M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer, Tokyo, 2017. doi: 10.1007/978-4-431-56600-7.

[2]

T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépedantes, Ark. Mat., Astr. Fys., 26 (1939), 9pp.

[3]

G. Camliyurt and I. Kukavica, Quantitative unique continuation for a parabolic equation, Indiana Univ. Math. J., 67 (2018), 657-678. doi: 10.1512/iumj.2018.67.7283.

[4]

H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemann manifolds, Invent. Math., 93 (1988), 161-183. doi: 10.1007/BF01393691.

[5]

L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J., 104 (2000), 113-127. doi: 10.1215/S0012-7094-00-10415-2.

[6]

L. Escauriaza and F. J. Fernández, Unique continuation for parabolic operators, Ark. Mat., 41 (2003), 35-60. doi: 10.1007/BF02384566.

[7]

L. Escauriaza, F. J. Fernández and S. Vessella, Doubling properties of caloric functions, Appl. Anal., 85 (2006), 205-223. doi: 10.1080/00036810500277082.

[8]

N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268. doi: 10.1512/iumj.1986.35.35015.

[9]

D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schorodinger operators, Ann. Math., 121 (1985), 463-488. doi: 10.2307/1971205.

[10]

C. E. Kenig, Quantitative unique continuation, logarithmic convexity of Gaussian means and Hardy's uncertainty principle, Proc. Sympos. Pure Math., 79 (2008), 207{227. doi: 10.1090/pspum/079/2500494.

[11]

I. Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240. doi: 10.1215/S0012-7094-98-09111-6.

[12]

H. Koch and D. Tataru, Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Commun. PDE, 34 (2009), 305-366. doi: 10.1080/03605300902740395.

[13]

E. M. Landis and O. A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russ. Math. Surv+, 29 (1974), 195-212.

[14]

F. Lin, A uniqueness theorem for parabolic equations, Commun. Pure Appl. Math., 43 (1990), 127-136. doi: 10.1002/cpa.3160430105.

[15]

K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247. doi: 10.1016/j.jfa.2010.04.015.

[16]

C. Poon, Unique continuation for parabolic equations, Comm. PDE, 21 (1996), 521-539. doi: 10.1080/03605309608821195.

[17]

J. C. Saut and E. Scheurer, Unique continuation for evolution equations, J. Differ. Equ., 66 (1987), 118-137. doi: 10.1016/0022-0396(87)90043-X.

[18]

C. Sogge, A unique continuation theorem for second order parabolic differential operators, Ark. Mat., 28 (1990), 159-182. doi: 10.1007/BF02387373.

[19]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Prob., 25 (2009), 123013. doi: 10.1088/0266-5611/25/12/123013.

[1]

Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009

[2]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[3]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[4]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[5]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[6]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[7]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[8]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[9]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[10]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[11]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[12]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[13]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[14]

Roberto Triggiani. Unique continuation of boundary over-determined Stokes and Oseen eigenproblems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 645-677. doi: 10.3934/dcdss.2009.2.645

[15]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[16]

Taige Wang, Dihong Xu. A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1599-1614. doi: 10.3934/dcdss.2022024

[17]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[18]

Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083

[19]

Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262

[20]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (177)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]