-
Previous Article
On the Cahn-Hilliard equation with mass source for biological applications
- CPAA Home
- This Issue
-
Next Article
Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity
A unique continuation property for a class of parabolic differential inequalities in a bounded domain
1. | College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China |
2. | College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China |
3. | Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA |
This article is concerned with a strong unique continuation property of a forward differential inequality abstracted from parabolic equations proposed on a convex domain $ \Omega $ prescribed with some regularity and growth conditions. Our results show that the value of the solutions can be determined uniquely by its value on an arbitrary open subset $ \omega $ in $ \Omega $ at any given positive time $ T $. We also derive the quantitative nature of this unique continuation, that is, the estimate of a $ L^2(\Omega) $ norm of the initial data, which is majorized by that of solution on the bounded open subset $ \omega $ at terminal moment $ t = T $.
References:
[1] |
M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer, Tokyo, 2017.
doi: 10.1007/978-4-431-56600-7. |
[2] |
T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépedantes, Ark. Mat., Astr. Fys., 26 (1939), 9pp. |
[3] |
G. Camliyurt and I. Kukavica, Quantitative unique continuation for a parabolic equation, Indiana Univ. Math. J., 67 (2018), 657-678.
doi: 10.1512/iumj.2018.67.7283. |
[4] |
H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemann manifolds, Invent. Math., 93 (1988), 161-183.
doi: 10.1007/BF01393691. |
[5] |
L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J., 104 (2000),
113-127.
doi: 10.1215/S0012-7094-00-10415-2. |
[6] |
L. Escauriaza and F. J. Fernández, Unique continuation for parabolic operators, Ark. Mat., 41 (2003), 35-60.
doi: 10.1007/BF02384566. |
[7] |
L. Escauriaza, F. J. Fernández and S. Vessella, Doubling properties of caloric functions, Appl. Anal., 85 (2006), 205-223.
doi: 10.1080/00036810500277082. |
[8] |
N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[9] |
D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schorodinger operators, Ann. Math., 121 (1985), 463-488.
doi: 10.2307/1971205. |
[10] |
C. E. Kenig, Quantitative unique continuation, logarithmic convexity of Gaussian means and
Hardy's uncertainty principle, Proc. Sympos. Pure Math., 79 (2008), 207{227.
doi: 10.1090/pspum/079/2500494. |
[11] |
I. Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240.
doi: 10.1215/S0012-7094-98-09111-6. |
[12] |
H. Koch and D. Tataru, Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Commun. PDE, 34 (2009), 305-366.
doi: 10.1080/03605300902740395. |
[13] |
E. M. Landis and O. A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russ. Math. Surv+, 29 (1974), 195-212. |
[14] |
F. Lin, A uniqueness theorem for parabolic equations, Commun. Pure Appl. Math., 43 (1990),
127-136.
doi: 10.1002/cpa.3160430105. |
[15] |
K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247.
doi: 10.1016/j.jfa.2010.04.015. |
[16] |
C. Poon, Unique continuation for parabolic equations, Comm. PDE, 21 (1996), 521-539.
doi: 10.1080/03605309608821195. |
[17] |
J. C. Saut and E. Scheurer, Unique continuation for evolution equations, J. Differ. Equ., 66 (1987), 118-137.
doi: 10.1016/0022-0396(87)90043-X. |
[18] |
C. Sogge, A unique continuation theorem for second order parabolic differential operators, Ark. Mat., 28 (1990), 159-182.
doi: 10.1007/BF02387373. |
[19] |
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Prob., 25 (2009), 123013.
doi: 10.1088/0266-5611/25/12/123013. |
show all references
References:
[1] |
M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer, Tokyo, 2017.
doi: 10.1007/978-4-431-56600-7. |
[2] |
T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépedantes, Ark. Mat., Astr. Fys., 26 (1939), 9pp. |
[3] |
G. Camliyurt and I. Kukavica, Quantitative unique continuation for a parabolic equation, Indiana Univ. Math. J., 67 (2018), 657-678.
doi: 10.1512/iumj.2018.67.7283. |
[4] |
H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemann manifolds, Invent. Math., 93 (1988), 161-183.
doi: 10.1007/BF01393691. |
[5] |
L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J., 104 (2000),
113-127.
doi: 10.1215/S0012-7094-00-10415-2. |
[6] |
L. Escauriaza and F. J. Fernández, Unique continuation for parabolic operators, Ark. Mat., 41 (2003), 35-60.
doi: 10.1007/BF02384566. |
[7] |
L. Escauriaza, F. J. Fernández and S. Vessella, Doubling properties of caloric functions, Appl. Anal., 85 (2006), 205-223.
doi: 10.1080/00036810500277082. |
[8] |
N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[9] |
D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schorodinger operators, Ann. Math., 121 (1985), 463-488.
doi: 10.2307/1971205. |
[10] |
C. E. Kenig, Quantitative unique continuation, logarithmic convexity of Gaussian means and
Hardy's uncertainty principle, Proc. Sympos. Pure Math., 79 (2008), 207{227.
doi: 10.1090/pspum/079/2500494. |
[11] |
I. Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240.
doi: 10.1215/S0012-7094-98-09111-6. |
[12] |
H. Koch and D. Tataru, Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Commun. PDE, 34 (2009), 305-366.
doi: 10.1080/03605300902740395. |
[13] |
E. M. Landis and O. A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russ. Math. Surv+, 29 (1974), 195-212. |
[14] |
F. Lin, A uniqueness theorem for parabolic equations, Commun. Pure Appl. Math., 43 (1990),
127-136.
doi: 10.1002/cpa.3160430105. |
[15] |
K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247.
doi: 10.1016/j.jfa.2010.04.015. |
[16] |
C. Poon, Unique continuation for parabolic equations, Comm. PDE, 21 (1996), 521-539.
doi: 10.1080/03605309608821195. |
[17] |
J. C. Saut and E. Scheurer, Unique continuation for evolution equations, J. Differ. Equ., 66 (1987), 118-137.
doi: 10.1016/0022-0396(87)90043-X. |
[18] |
C. Sogge, A unique continuation theorem for second order parabolic differential operators, Ark. Mat., 28 (1990), 159-182.
doi: 10.1007/BF02387373. |
[19] |
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Prob., 25 (2009), 123013.
doi: 10.1088/0266-5611/25/12/123013. |
[1] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[2] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[3] |
Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222 |
[4] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[5] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[6] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[7] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[8] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[9] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[10] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[11] |
Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020119 |
[12] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[13] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[14] |
Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020 |
[15] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[16] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[17] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[18] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[19] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[20] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]