    February  2021, 20(2): 559-582. doi: 10.3934/cpaa.2020281

## Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy

 1 Fundamental General Education Center, National Chin-Yi University of Technology, Taichung 411, Taiwan 2 Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

* Corresponding author

Received  May 2020 Revised  September 2020 Published  December 2020

Fund Project: This work is partially supported by the Ministry of Science and Technology of the Republic of China under grant No. MOST 103-2115-M-167-002

We study the classification and evolution of bifurcation curves for the porous-medium combustion problem
 $\begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \dfrac{1+au}{1+e^{d(1-u)}} = 0, \ -1 where $ u $is the solid temperature, parameters $ \lambda >0 $, $ a\geq 0 $, and the activation energy parameter $ d>0 $is large. We mainly prove that, on the $ (\lambda , ||u||_{\infty }) $-plane, the bifurcation curve is S-shaped with exactly two turning points for any $ \ (d, a)\in \Omega \equiv \left \{ (d, a):(0
for some positive number
 $d_{1}\approx 2.225$
and a nonnegative, strictly decreasing function
 $A_{1}(d)$
defined on
 $(0, d_{1}].$
Furthermore, for any
 $\ (d, a)\in \Omega ,$
we give a classification and evolution of totally four different S-shaped bifurcation curves. In addition, for any
 $d>0$
and
 $a\geq \tilde{a}\approx 1.704$
for some positive
 $\tilde{a},$
then the bifurcation curve
 $S$
is type 4 S-shaped on the
 $(\lambda , \left \Vert u\right \Vert _{\infty })$
-plane.
Citation: Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281
##### References:
  A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar  K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar  T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar  P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar  J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar  J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar  K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar  S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar  S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar

show all references

##### References:
  A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar  K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar  T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar  P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar  J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar  J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar  K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar  S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar  S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar Four different types of S-shaped bifurcation curves $S$ of (1.1). (i). Type 1: $\lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda} = \infty .$ (ii). Type 2: $\lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda}<\infty .$ (iii). Type 3: $\lambda _{\ast }<\bar{ \lambda} = \lambda ^{\ast }.$ (iv). Type 4: $\lambda _{\ast }<\bar{ \lambda}< \lambda ^{\ast }.$ Classification of bifurcation curves $S$ for (1.1) with $d>0$ and $a\geq 0$. $d_{3}$ $(\approx 1.170)<d_{2}$ $(\approx 1.401)$ $<d_{1}$ $(\approx 2.225).$ The bifurcation curves $S$ for the region bounded between curves $A_{4}(d)$, $A_{5}(d)$ and $A_{1}(d)$ are all S-shaped Graph of $H_{d, a}(u)$ with $H_{d, a}(u_{0})\leq 0$ for some $u_{0}\in (0, \gamma _{d, a}]$ Graphs of functions $A_{4}(d)$ and $A_{5}(d)$ for $0<d\leq d_{3}$ $(\approx 1.170).$
  Chih-Yuan Chen, Shin-Hwa Wang, Kuo-Chih Hung. S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2589-2608. doi: 10.3934/cpaa.2014.13.2589  Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure & Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032  Sabri Bensid, Jesús Ildefonso Díaz. Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1757-1778. doi: 10.3934/dcdsb.2017105  Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839  Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783  Xue Dong He, Roy Kouwenberg, Xun Yu Zhou. Inverse S-shaped probability weighting and its impact on investment. Mathematical Control & Related Fields, 2018, 8 (3&4) : 679-706. doi: 10.3934/mcrf.2018029  Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061  Ansgar Jüngel, Stefan Schuchnigg. A discrete Bakry-Emery method and its application to the porous-medium equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5541-5560. doi: 10.3934/dcds.2017241  Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388  Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147  Tetsuya Ishiwata, Takeshi Ohtsuka. Evolution of a spiral-shaped polygonal curve by the crystalline curvature flow with a pinned tip. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5261-5295. doi: 10.3934/dcdsb.2019058  Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525  Jiapeng Huang, Chunhua Jin. Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5415-5439. doi: 10.3934/dcds.2020233  Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011  S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590  Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034  Alessandra Pluda. Evolution of spoon-shaped networks. Networks & Heterogeneous Media, 2016, 11 (3) : 509-526. doi: 10.3934/nhm.2016007  Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110  Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355  Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

2019 Impact Factor: 1.105

## Metrics

• PDF downloads (66)
• HTML views (99)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]