February  2021, 20(2): 559-582. doi: 10.3934/cpaa.2020281

Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy

1. 

Fundamental General Education Center, National Chin-Yi University of Technology, Taichung 411, Taiwan

2. 

Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

* Corresponding author

Received  May 2020 Revised  September 2020 Published  December 2020

Fund Project: This work is partially supported by the Ministry of Science and Technology of the Republic of China under grant No. MOST 103-2115-M-167-002

We study the classification and evolution of bifurcation curves for the porous-medium combustion problem
$ \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \dfrac{1+au}{1+e^{d(1-u)}} = 0, \ -1<x<1, \\ u(-1) = u(1) = 0, \end{cases} \end{equation*} $
where
$ u $
is the solid temperature, parameters
$ \lambda >0 $
,
$ a\geq 0 $
, and the activation energy parameter
$ d>0 $
is large. We mainly prove that, on the
$ (\lambda , ||u||_{\infty }) $
-plane, the bifurcation curve is S-shaped with exactly two turning points for any
$ \ (d, a)\in \Omega \equiv \left \{ (d, a):(0<d<d_{1}, \text{ }a\geq A_{1}(d))\text{ or }(d\geq d_{1}, \text{ }a\geq 0)\right \} $
for some positive number
$ d_{1}\approx 2.225 $
and a nonnegative, strictly decreasing function
$ A_{1}(d) $
defined on
$ (0, d_{1}]. $
Furthermore, for any
$ \ (d, a)\in \Omega , $
we give a classification and evolution of totally four different S-shaped bifurcation curves. In addition, for any
$ d>0 $
and
$ a\geq \tilde{a}\approx 1.704 $
for some positive
$ \tilde{a}, $
then the bifurcation curve
$ S $
is type 4 S-shaped on the
$ (\lambda , \left \Vert u\right \Vert _{\infty }) $
-plane.
Citation: Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281
References:
[1]

A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar

[2]

K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar

[3]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar

[4]

P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar

[5]

J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar

[6]

J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar

[7]

K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar

[8]

S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar

[9]

S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar

show all references

References:
[1]

A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar

[2]

K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar

[3]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar

[4]

P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar

[5]

J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar

[6]

J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar

[7]

K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar

[8]

S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar

[9]

S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar

Figure 1.  Four different types of S-shaped bifurcation curves $ S $ of (1.1). (i). Type 1: $ \lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda} = \infty . $ (ii). Type 2: $ \lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda}<\infty . $ (iii). Type 3: $ \lambda _{\ast }<\bar{ \lambda} = \lambda ^{\ast }. $ (iv). Type 4: $ \lambda _{\ast }<\bar{ \lambda}< \lambda ^{\ast }. $
Figure 2.  Classification of bifurcation curves $ S $ for (1.1) with $ d>0 $ and $ a\geq 0 $. $ d_{3} $ $ (\approx 1.170)<d_{2} $ $ (\approx 1.401) $ $ <d_{1} $ $ (\approx 2.225). $ The bifurcation curves $ S $ for the region bounded between curves $ A_{4}(d) $, $ A_{5}(d) $ and $ A_{1}(d) $ are all S-shaped
Figure 3.  Graph of $ H_{d, a}(u) $ with $ H_{d, a}(u_{0})\leq 0 $ for some $ u_{0}\in (0, \gamma _{d, a}] $
Figure 4.  Graphs of functions $ A_{4}(d) $ and $ A_{5}(d) $ for $ 0<d\leq d_{3} $ $ (\approx 1.170). $
[1]

Chih-Yuan Chen, Shin-Hwa Wang, Kuo-Chih Hung. S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2589-2608. doi: 10.3934/cpaa.2014.13.2589

[2]

Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure & Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032

[3]

Sabri Bensid, Jesús Ildefonso Díaz. Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1757-1778. doi: 10.3934/dcdsb.2017105

[4]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[5]

Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783

[6]

Xue Dong He, Roy Kouwenberg, Xun Yu Zhou. Inverse S-shaped probability weighting and its impact on investment. Mathematical Control & Related Fields, 2018, 8 (3&4) : 679-706. doi: 10.3934/mcrf.2018029

[7]

Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061

[8]

Ansgar Jüngel, Stefan Schuchnigg. A discrete Bakry-Emery method and its application to the porous-medium equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5541-5560. doi: 10.3934/dcds.2017241

[9]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388

[10]

Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147

[11]

Tetsuya Ishiwata, Takeshi Ohtsuka. Evolution of a spiral-shaped polygonal curve by the crystalline curvature flow with a pinned tip. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5261-5295. doi: 10.3934/dcdsb.2019058

[12]

Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[13]

Jiapeng Huang, Chunhua Jin. Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5415-5439. doi: 10.3934/dcds.2020233

[14]

Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011

[15]

S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590

[16]

Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034

[17]

Alessandra Pluda. Evolution of spoon-shaped networks. Networks & Heterogeneous Media, 2016, 11 (3) : 509-526. doi: 10.3934/nhm.2016007

[18]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[19]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[20]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (66)
  • HTML views (99)
  • Cited by (0)

Other articles
by authors

[Back to Top]