# American Institute of Mathematical Sciences

doi: 10.3934/cpaa.2020281

## Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy

 1 Fundamental General Education Center, National Chin-Yi University of Technology, Taichung 411, Taiwan 2 Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

* Corresponding author

Received  May 2020 Revised  September 2020 Published  December 2020

Fund Project: This work is partially supported by the Ministry of Science and Technology of the Republic of China under grant No. MOST 103-2115-M-167-002

We study the classification and evolution of bifurcation curves for the porous-medium combustion problem
 $\begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \dfrac{1+au}{1+e^{d(1-u)}} = 0, \ -1 where $ u $is the solid temperature, parameters $ \lambda >0 $, $ a\geq 0 $, and the activation energy parameter $ d>0 $is large. We mainly prove that, on the $ (\lambda , ||u||_{\infty }) $-plane, the bifurcation curve is S-shaped with exactly two turning points for any $ \ (d, a)\in \Omega \equiv \left \{ (d, a):(0
for some positive number
 $d_{1}\approx 2.225$
and a nonnegative, strictly decreasing function
 $A_{1}(d)$
defined on
 $(0, d_{1}].$
Furthermore, for any
 $\ (d, a)\in \Omega ,$
we give a classification and evolution of totally four different S-shaped bifurcation curves. In addition, for any
 $d>0$
and
 $a\geq \tilde{a}\approx 1.704$
for some positive
 $\tilde{a},$
then the bifurcation curve
 $S$
is type 4 S-shaped on the
 $(\lambda , \left \Vert u\right \Vert _{\infty })$
-plane.
Citation: Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020281
##### References:
 [1] A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar [2] K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar [3] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar [4] P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar [5] J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar [6] J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar [7] K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar [8] S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar [9] S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar

show all references

##### References:
 [1] A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar [2] K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar [3] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar [4] P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar [5] J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar [6] J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar [7] K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar [8] S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar [9] S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar
Four different types of S-shaped bifurcation curves $S$ of (1.1). (i). Type 1: $\lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda} = \infty .$ (ii). Type 2: $\lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda}<\infty .$ (iii). Type 3: $\lambda _{\ast }<\bar{ \lambda} = \lambda ^{\ast }.$ (iv). Type 4: $\lambda _{\ast }<\bar{ \lambda}< \lambda ^{\ast }.$
Classification of bifurcation curves $S$ for (1.1) with $d>0$ and $a\geq 0$. $d_{3}$ $(\approx 1.170)<d_{2}$ $(\approx 1.401)$ $<d_{1}$ $(\approx 2.225).$ The bifurcation curves $S$ for the region bounded between curves $A_{4}(d)$, $A_{5}(d)$ and $A_{1}(d)$ are all S-shaped
Graph of $H_{d, a}(u)$ with $H_{d, a}(u_{0})\leq 0$ for some $u_{0}\in (0, \gamma _{d, a}]$
Graphs of functions $A_{4}(d)$ and $A_{5}(d)$ for $0<d\leq d_{3}$ $(\approx 1.170).$
 [1] Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388 [2] Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006 [3] Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 [4] Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232 [5] Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055 [6] Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279 [7] Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 [8] Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 [9] Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 [10] Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 [11] Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356 [12] Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461 [13] Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 [14] Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 [15] Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 [16] Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265 [17] Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 [18] Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 [19] Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 [20] Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

2019 Impact Factor: 1.105

## Tools

Article outline

Figures and Tables