This paper considers two problems: the initial boundary value problem of nonlinear Caputo time-fractional pseudo-parabolic equations with fractional Laplacian, and the Cauchy problem (initial value problem) of Caputo time-fractional pseudo-parabolic equations. For the first problem with the source term satisfying the globally Lipschitz condition, we establish the local well-posedness theory including existence, uniqueness and regularity of the local solution, and the further local existence theory related to the finite time blow-up are also obtained for the problem with logarithmic nonlinearity. For the second problem with the source term satisfying the globally Lipschitz condition, we prove the global existence theorem.
Citation: |
[1] |
J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, T. Am. Math. Soc., 352 (1999), 285-310.
doi: 10.1090/S0002-9947-99-02528-3.![]() ![]() ![]() |
[2] |
R. P. Agarwal, M. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511543005.![]() ![]() ![]() |
[3] |
G. Akagi, Fractional flows driven by subdifferentials in Hilbert spaces, Israel J. Math., 234 (2019), 809-862.
doi: 10.1007/s11856-019-1936-9.![]() ![]() ![]() |
[4] |
B. de Andrade and A. Viana, Abstract Volterra integro-differential equations with applications to parabolic models with memory, Math. Ann., 369 (2017), 1131-1175.
doi: 10.1007/s00208-016-1469-z.![]() ![]() ![]() |
[5] |
B. Andrade and A. Viana, On a fractional reaction-diffusion equation, Z. Angew. Math. Phys., 68 (2017), 11 pp.
doi: 10.1007/s00033-017-0801-0.![]() ![]() ![]() |
[6] |
S. Antontsev and S. Shmarev, On a class of fully nonlinear parabolic equations, Adv. Nonlinear Anal., 8 (2019), 79-100.
doi: 10.1515/anona-2016-0055.![]() ![]() ![]() |
[7] |
H. Allouba and W. Zheng, Brownian-time processes: the PDE connection and the half-derivative generator, Ann. Probab., 29 (2001), 1780-1795.
doi: 10.1214/aop/1015345772.![]() ![]() ![]() |
[8] |
J. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576-5587.
![]() |
[9] |
E. D. Benedetto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821-854.
doi: 10.1512/iumj.1981.30.30062.![]() ![]() ![]() |
[10] |
M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent, Geophys. J. Int., 13 (1967), 529-539.
![]() |
[11] |
Y. Cao, J. Yin and C. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differ. Equ., 246 (2009), 4568-4590.
doi: 10.1016/j.jde.2009.03.021.![]() ![]() ![]() |
[12] |
Y. Cao and J. X. Yin, Small perturbation of a semilinear pseudo-parabolic equation, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 631-642.
doi: 10.3934/dcds.2016.36.631.![]() ![]() ![]() |
[13] |
D. del Castillo-Negrete, B. A. Carreras and V. E. Lynch, Fractional diffusion in plasma turbulence, Phys. Plasmas, 11, 3854 (2004).
![]() |
[14] |
H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equ., 258 (2015), 4424-4442.
doi: 10.1016/j.jde.2015.01.038.![]() ![]() ![]() |
[15] |
Y. Chen and R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., 192 (2020), 39pp.
doi: 10.1016/j.na.2019.111664.![]() ![]() ![]() |
[16] |
Y. Chen, H. Gao, M. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Cont. Dyn. Syst. Ser. A, 34 (2014), 79-98.
doi: 10.3934/dcds.2014.34.79.![]() ![]() ![]() |
[17] |
W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016.![]() ![]() ![]() |
[18] |
B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys., 33 (1961), 239-249.
doi: 10.1103/RevModPhys.33.239.![]() ![]() ![]() |
[19] |
P. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear volterra equations with completely positive kernels, SIAM J. Math. Anal., 12 (1981), 514-535.
doi: 10.1137/0512045.![]() ![]() ![]() |
[20] |
H. Dong and D. Kim, $L_p$-estimates for time fractional parabolic equations with coefficients measurable in time, Adv. Math., 345 (2019), 289-345.
doi: 10.1016/j.aim.2019.01.016.![]() ![]() ![]() |
[21] |
M. Fila and J. Lankeit, Lack of smoothing for bounded solutions of a semilinear parabolic equation, Adv. Nonlinear Anal., 9 (2020), 1437-1452.
doi: 10.1515/anona-2020-0059.![]() ![]() ![]() |
[22] |
C. G. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Discrete Cont. Dyn. Syst. Ser. A, 36 (2016), 1279-1319.
doi: 10.3934/dcds.2016.36.1279.![]() ![]() ![]() |
[23] |
T-E. Ghoul, N. V. Tien and H. Zaag, Construction of type I blowup solutions for a higher order semilinear parabolic equation, Adv. Nonlinear Anal., 9 (2020), 388-412.
doi: 10.1515/anona-2020-0006.![]() ![]() ![]() |
[24] |
V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Ration. Mech. Anal., 49 (1972), 57-78.
doi: 10.1007/BF00281474.![]() ![]() ![]() |
[25] |
Y. Giga and T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Commun. Partial Differ. Equ., 42 (2017), 1088-1120.
doi: 10.1080/03605302.2017.1324880.![]() ![]() ![]() |
[26] |
R. Gorenflo, Y. Luchko and F. Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal., 2 (1999), 383-414.
![]() ![]() |
[27] |
R. Gorenflo, A. A. Kilbas and F. Mainardi, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014.
doi: 10.1007/978-3-662-43930-2.![]() ![]() ![]() |
[28] |
E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Second printing corrected, Springer-Verlag, Berlin, (1969).
![]() ![]() |
[29] |
L. Jin, L. Li and S. Fang, The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation, Comput. Math. Appl., 73 (2017), 2221-2232.
doi: 10.1016/j.camwa.2017.03.005.![]() ![]() ![]() |
[30] |
V. Keyantuo and M. Warma, On the interior approximate controllability for fractional wave equations, Discrete Cont. Dyn. Syst. Ser. A, 36 (2016), 3719-3739.
doi: 10.3934/dcds.2016.36.3719.![]() ![]() ![]() |
[31] |
S. Khomrutai, Global well-posedness and grow-up rate of solutions for a sublinear pseudoparabolic equation, J. Differ. Equ., 260 (2015), 3598-3657.
doi: 10.1016/j.jde.2015.10.043.![]() ![]() ![]() |
[32] |
L. Li, J. G. Liu and L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differ. Equ., 265 (2018), 1044-1096.
doi: 10.1016/j.jde.2018.03.025.![]() ![]() ![]() |
[33] |
Z. P. Li and W. J. Du, Cauchy problems of pseudo-parabolic equations with inhomogeneous terms, Z. Angew. Math. Phys., 66 (2015), 3181-3203.
doi: 10.1007/s00033-015-0558-2.![]() ![]() ![]() |
[34] |
G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263-289.
doi: 10.3934/era.2020016.![]() ![]() ![]() |
[35] |
S. Ji, J. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equ., 261 (2016), 5446-5464.
doi: 10.1016/j.jde.2016.08.017.![]() ![]() ![]() |
[36] |
W. Lian, J. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equ., 269 (2020), 4914-4959.
doi: 10.1016/j.jde.2020.03.047.![]() ![]() ![]() |
[37] |
A. Magana, A. Miranville and R. Quintanilla, On the time decay in phase-lag thermoelasticity with two temperatures, Electron. Res. Arch., 27 (2019), 7-19.
doi: 10.3934/era.2019007.![]() ![]() ![]() |
[38] |
B. B. Mandelbrot and J. W. V. Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.
doi: 10.1137/1010093.![]() ![]() ![]() |
[39] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[40] |
R. H. Nochetto, E. Otárola and A. J. Salgado, A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal., 54 (2016), 848-873.
doi: 10.1137/14096308X.![]() ![]() ![]() |
[41] |
S. Pan, Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle, Electronic Research Archive, 27 (2019), 89-99.
doi: 10.3934/era.2019011.![]() ![]() ![]() |
[42] |
N. Pan, P. Pucci, R. Xu and B. Zhang, Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equ., 19 (2019), 615-643.
doi: 10.1007/s00028-019-00489-6.![]() ![]() ![]() |
[43] |
N. S. Papageorgiouae, V. D. Rădulescu and D. D. Repovă, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl., 136 (2020), 1-21.
doi: 10.1016/j.matpur.2020.02.004.![]() ![]() ![]() |
[44] |
V. Padron, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, T. Am. Math. Soc., 356 (2004), 2739-2756.
doi: 10.1090/S0002-9947-03-03340-3.![]() ![]() ![]() |
[45] |
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Vol. 198 (1998), Elsevier, Amsterdam.
![]() ![]() |
[46] |
M. Ralf and K. Joseph, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3.![]() ![]() ![]() |
[47] |
T. Saanouni, Global and non global solutions for a class of coupled parabolic systems, Adv. Nonlinear Anal., 9 (2020), 1383-1401.
doi: 10.1515/anona-2020-0073.![]() ![]() ![]() |
[48] |
E. Shivanian and A. Jafarabadi, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
![]() |
[49] |
R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.
doi: 10.1137/0501001.![]() ![]() ![]() |
[50] |
Y. F. Sun, Z. Zeng and J. Song, Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation, Numer. Algebra, Control. Optim., 10 (2020), 157-164.
doi: 10.3934/naco.2019045.![]() ![]() ![]() |
[51] |
E. Orsingher and L. Beghin, Fractional diffusion equations and processes with randomly varying time, Ann. Probab., 37 (2009), 206-249.
doi: 10.1214/08-AOP401.![]() ![]() ![]() |
[52] |
E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with Caputo time derivative, J. Differ. Equ., 262 (2017), 6018-6046.
doi: 10.1016/j.jde.2017.02.024.![]() ![]() ![]() |
[53] |
Tokinaga and P. Rybka, On viscosity solutions of space-fractional diffusion equations of Caputo type, SIAM J. Math. Anal., 52 (2020), 653-681.
doi: 10.1137/19M1259316.![]() ![]() ![]() |
[54] |
D. D. Trong, E. Nane, N. D. Minh and N. H. Tuan, Continuity of solutions of a class of fractional equations, Potential Anal., 49 (2018), 423-478.
doi: 10.1007/s11118-017-9663-5.![]() ![]() ![]() |
[55] |
X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.
doi: 10.1515/anona-2020-0141.![]() ![]() ![]() |
[56] |
Y. Wang and Y. Feng, theta scheme with two dimensional wavelet-like incremental unknowns for a class of porous medium diffusion-type equations, Numer. Algebra, Control. Optim., 9 (2019), 461-481.
doi: 10.3934/naco.2019027.![]() ![]() ![]() |
[57] |
X. Wang, Y. Chen, Y. Yang, J. Li and R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal., 188 (2019), 475-499.
doi: 10.1016/j.na.2019.06.019.![]() ![]() ![]() |
[58] |
J. R. L. Webb, Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471 (2019), 692-711.
doi: 10.1016/j.jmaa.2018.11.004.![]() ![]() ![]() |
[59] |
R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.
doi: 10.1016/j.jfa.2013.03.010.![]() ![]() ![]() |
[60] |
R. Xu, W. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321-356.
doi: 10.1007/s11425-017-9280-x.![]() ![]() ![]() |
[61] |
Y. Zhou, Existence and uniqueness of solutions for a system of fractional differential equations, Fract. Calc. Appl. Anal., 12 (2009), 195-204.
![]() ![]() |
[62] |
J. Zhou, Initial boundary value problem for a inhomogeneous pseudo-parabolic equation, Electron. Res. Arch., 28 (2020), 67-90.
doi: 10.3934/era.2020005.![]() ![]() ![]() |