doi: 10.3934/cpaa.2020282

Semilinear Caputo time-fractional pseudo-parabolic equations

1. 

Department of Mathematics and Computer Science, University of Science Ho Chi Minh City, Vietnam

2. 

Vietnam National University, Ho Chi Minh City, Vietnam

3. 

Division of Applied Mathematics, Thu Dau Mot University Binh Duong Province, Vietnam

4. 

Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City, 700000, Vietnam

5. 

Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam

6. 

College of Mathematical Sciences, Harbin Engineering University, 150001, China

*Corresponding author

Received  July 2020 Revised  September 2020 Published  December 2020

Fund Project: The first and the second author were supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2019.09. The third author was supported by National Natural Science Foundation of China (11871017)

This paper considers two problems: the initial boundary value problem of nonlinear Caputo time-fractional pseudo-parabolic equations with fractional Laplacian, and the Cauchy problem (initial value problem) of Caputo time-fractional pseudo-parabolic equations. For the first problem with the source term satisfying the globally Lipschitz condition, we establish the local well-posedness theory including existence, uniqueness and regularity of the local solution, and the further local existence theory related to the finite time blow-up are also obtained for the problem with logarithmic nonlinearity. For the second problem with the source term satisfying the globally Lipschitz condition, we prove the global existence theorem.

Citation: Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020282
References:
[1]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, T. Am. Math. Soc., 352 (1999), 285-310.  doi: 10.1090/S0002-9947-99-02528-3.  Google Scholar

[2] R. P. AgarwalM. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511543005.  Google Scholar
[3]

G. Akagi, Fractional flows driven by subdifferentials in Hilbert spaces, Israel J. Math., 234 (2019), 809-862.  doi: 10.1007/s11856-019-1936-9.  Google Scholar

[4]

B. de Andrade and A. Viana, Abstract Volterra integro-differential equations with applications to parabolic models with memory, Math. Ann., 369 (2017), 1131-1175.  doi: 10.1007/s00208-016-1469-z.  Google Scholar

[5]

B. Andrade and A. Viana, On a fractional reaction-diffusion equation, Z. Angew. Math. Phys., 68 (2017), 11 pp. doi: 10.1007/s00033-017-0801-0.  Google Scholar

[6]

S. Antontsev and S. Shmarev, On a class of fully nonlinear parabolic equations, Adv. Nonlinear Anal., 8 (2019), 79-100.  doi: 10.1515/anona-2016-0055.  Google Scholar

[7]

H. Allouba and W. Zheng, Brownian-time processes: the PDE connection and the half-derivative generator, Ann. Probab., 29 (2001), 1780-1795.  doi: 10.1214/aop/1015345772.  Google Scholar

[8]

J. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576-5587.   Google Scholar

[9]

E. D. Benedetto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821-854.  doi: 10.1512/iumj.1981.30.30062.  Google Scholar

[10]

M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent, Geophys. J. Int., 13 (1967), 529-539.   Google Scholar

[11]

Y. CaoJ. Yin and C. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differ. Equ., 246 (2009), 4568-4590.  doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[12]

Y. Cao and J. X. Yin, Small perturbation of a semilinear pseudo-parabolic equation, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 631-642.  doi: 10.3934/dcds.2016.36.631.  Google Scholar

[13]

D. del Castillo-Negrete, B. A. Carreras and V. E. Lynch, Fractional diffusion in plasma turbulence, Phys. Plasmas, 11, 3854 (2004). Google Scholar

[14]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equ., 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[15]

Y. Chen and R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., 192 (2020), 39pp. doi: 10.1016/j.na.2019.111664.  Google Scholar

[16]

Y. ChenH. GaoM. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Cont. Dyn. Syst. Ser. A, 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.  Google Scholar

[17]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[18]

B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys., 33 (1961), 239-249.  doi: 10.1103/RevModPhys.33.239.  Google Scholar

[19]

P. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear volterra equations with completely positive kernels, SIAM J. Math. Anal., 12 (1981), 514-535.  doi: 10.1137/0512045.  Google Scholar

[20]

H. Dong and D. Kim, $L_p$-estimates for time fractional parabolic equations with coefficients measurable in time, Adv. Math., 345 (2019), 289-345.  doi: 10.1016/j.aim.2019.01.016.  Google Scholar

[21]

M. Fila and J. Lankeit, Lack of smoothing for bounded solutions of a semilinear parabolic equation, Adv. Nonlinear Anal., 9 (2020), 1437-1452.  doi: 10.1515/anona-2020-0059.  Google Scholar

[22]

C. G. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Discrete Cont. Dyn. Syst. Ser. A, 36 (2016), 1279-1319.  doi: 10.3934/dcds.2016.36.1279.  Google Scholar

[23]

T-E. GhoulN. V. Tien and H. Zaag, Construction of type I blowup solutions for a higher order semilinear parabolic equation, Adv. Nonlinear Anal., 9 (2020), 388-412.  doi: 10.1515/anona-2020-0006.  Google Scholar

[24]

V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Ration. Mech. Anal., 49 (1972), 57-78.  doi: 10.1007/BF00281474.  Google Scholar

[25]

Y. Giga and T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Commun. Partial Differ. Equ., 42 (2017), 1088-1120.  doi: 10.1080/03605302.2017.1324880.  Google Scholar

[26]

R. GorenfloY. Luchko and F. Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal., 2 (1999), 383-414.   Google Scholar

[27]

R. Gorenflo, A. A. Kilbas and F. Mainardi, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[28]

E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Second printing corrected, Springer-Verlag, Berlin, (1969).  Google Scholar

[29]

L. JinL. Li and S. Fang, The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation, Comput. Math. Appl., 73 (2017), 2221-2232.  doi: 10.1016/j.camwa.2017.03.005.  Google Scholar

[30]

V. Keyantuo and M. Warma, On the interior approximate controllability for fractional wave equations, Discrete Cont. Dyn. Syst. Ser. A, 36 (2016), 3719-3739.  doi: 10.3934/dcds.2016.36.3719.  Google Scholar

[31]

S. Khomrutai, Global well-posedness and grow-up rate of solutions for a sublinear pseudoparabolic equation, J. Differ. Equ., 260 (2015), 3598-3657.  doi: 10.1016/j.jde.2015.10.043.  Google Scholar

[32]

L. LiJ. G. Liu and L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differ. Equ., 265 (2018), 1044-1096.  doi: 10.1016/j.jde.2018.03.025.  Google Scholar

[33]

Z. P. Li and W. J. Du, Cauchy problems of pseudo-parabolic equations with inhomogeneous terms, Z. Angew. Math. Phys., 66 (2015), 3181-3203.  doi: 10.1007/s00033-015-0558-2.  Google Scholar

[34]

G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263-289.  doi: 10.3934/era.2020016.  Google Scholar

[35]

S. JiJ. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equ., 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[36]

W. LianJ. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equ., 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar

[37]

A. MaganaA. Miranville and R. Quintanilla, On the time decay in phase-lag thermoelasticity with two temperatures, Electron. Res. Arch., 27 (2019), 7-19.  doi: 10.3934/era.2019007.  Google Scholar

[38]

B. B. Mandelbrot and J. W. V. Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.  Google Scholar

[39]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[40]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal., 54 (2016), 848-873.  doi: 10.1137/14096308X.  Google Scholar

[41]

S. Pan, Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle, Electronic Research Archive, 27 (2019), 89-99.  doi: 10.3934/era.2019011.  Google Scholar

[42]

N. PanP. PucciR. Xu and B. Zhang, Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equ., 19 (2019), 615-643.  doi: 10.1007/s00028-019-00489-6.  Google Scholar

[43]

N. S. PapageorgiouaeV. D. Rădulescu and D. D. Repovă, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl., 136 (2020), 1-21.  doi: 10.1016/j.matpur.2020.02.004.  Google Scholar

[44]

V. Padron, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, T. Am. Math. Soc., 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[45]

I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Vol. 198 (1998), Elsevier, Amsterdam.  Google Scholar

[46]

M. Ralf and K. Joseph, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[47]

T. Saanouni, Global and non global solutions for a class of coupled parabolic systems, Adv. Nonlinear Anal., 9 (2020), 1383-1401.  doi: 10.1515/anona-2020-0073.  Google Scholar

[48]

E. Shivanian and A. Jafarabadi, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. Google Scholar

[49]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[50]

Y. F. SunZ. Zeng and J. Song, Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation, Numer. Algebra, Control. Optim., 10 (2020), 157-164.  doi: 10.3934/naco.2019045.  Google Scholar

[51]

E. Orsingher and L. Beghin, Fractional diffusion equations and processes with randomly varying time, Ann. Probab., 37 (2009), 206-249.  doi: 10.1214/08-AOP401.  Google Scholar

[52]

E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with Caputo time derivative, J. Differ. Equ., 262 (2017), 6018-6046.  doi: 10.1016/j.jde.2017.02.024.  Google Scholar

[53]

Tokinaga and P. Rybka, On viscosity solutions of space-fractional diffusion equations of Caputo type, SIAM J. Math. Anal., 52 (2020), 653-681.  doi: 10.1137/19M1259316.  Google Scholar

[54]

D. D. TrongE. NaneN. D. Minh and N. H. Tuan, Continuity of solutions of a class of fractional equations, Potential Anal., 49 (2018), 423-478.  doi: 10.1007/s11118-017-9663-5.  Google Scholar

[55]

X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.  doi: 10.1515/anona-2020-0141.  Google Scholar

[56]

Y. Wang and Y. Feng, theta scheme with two dimensional wavelet-like incremental unknowns for a class of porous medium diffusion-type equations, Numer. Algebra, Control. Optim., 9 (2019), 461-481.  doi: 10.3934/naco.2019027.  Google Scholar

[57]

X. WangY. ChenY. YangJ. Li and R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal., 188 (2019), 475-499.  doi: 10.1016/j.na.2019.06.019.  Google Scholar

[58]

J. R. L. Webb, Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471 (2019), 692-711.  doi: 10.1016/j.jmaa.2018.11.004.  Google Scholar

[59]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[60]

R. XuW. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321-356.  doi: 10.1007/s11425-017-9280-x.  Google Scholar

[61]

Y. Zhou, Existence and uniqueness of solutions for a system of fractional differential equations, Fract. Calc. Appl. Anal., 12 (2009), 195-204.   Google Scholar

[62]

J. Zhou, Initial boundary value problem for a inhomogeneous pseudo-parabolic equation, Electron. Res. Arch., 28 (2020), 67-90.  doi: 10.3934/era.2020005.  Google Scholar

show all references

References:
[1]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, T. Am. Math. Soc., 352 (1999), 285-310.  doi: 10.1090/S0002-9947-99-02528-3.  Google Scholar

[2] R. P. AgarwalM. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511543005.  Google Scholar
[3]

G. Akagi, Fractional flows driven by subdifferentials in Hilbert spaces, Israel J. Math., 234 (2019), 809-862.  doi: 10.1007/s11856-019-1936-9.  Google Scholar

[4]

B. de Andrade and A. Viana, Abstract Volterra integro-differential equations with applications to parabolic models with memory, Math. Ann., 369 (2017), 1131-1175.  doi: 10.1007/s00208-016-1469-z.  Google Scholar

[5]

B. Andrade and A. Viana, On a fractional reaction-diffusion equation, Z. Angew. Math. Phys., 68 (2017), 11 pp. doi: 10.1007/s00033-017-0801-0.  Google Scholar

[6]

S. Antontsev and S. Shmarev, On a class of fully nonlinear parabolic equations, Adv. Nonlinear Anal., 8 (2019), 79-100.  doi: 10.1515/anona-2016-0055.  Google Scholar

[7]

H. Allouba and W. Zheng, Brownian-time processes: the PDE connection and the half-derivative generator, Ann. Probab., 29 (2001), 1780-1795.  doi: 10.1214/aop/1015345772.  Google Scholar

[8]

J. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576-5587.   Google Scholar

[9]

E. D. Benedetto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821-854.  doi: 10.1512/iumj.1981.30.30062.  Google Scholar

[10]

M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent, Geophys. J. Int., 13 (1967), 529-539.   Google Scholar

[11]

Y. CaoJ. Yin and C. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differ. Equ., 246 (2009), 4568-4590.  doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[12]

Y. Cao and J. X. Yin, Small perturbation of a semilinear pseudo-parabolic equation, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 631-642.  doi: 10.3934/dcds.2016.36.631.  Google Scholar

[13]

D. del Castillo-Negrete, B. A. Carreras and V. E. Lynch, Fractional diffusion in plasma turbulence, Phys. Plasmas, 11, 3854 (2004). Google Scholar

[14]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equ., 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[15]

Y. Chen and R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., 192 (2020), 39pp. doi: 10.1016/j.na.2019.111664.  Google Scholar

[16]

Y. ChenH. GaoM. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Cont. Dyn. Syst. Ser. A, 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.  Google Scholar

[17]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[18]

B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys., 33 (1961), 239-249.  doi: 10.1103/RevModPhys.33.239.  Google Scholar

[19]

P. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear volterra equations with completely positive kernels, SIAM J. Math. Anal., 12 (1981), 514-535.  doi: 10.1137/0512045.  Google Scholar

[20]

H. Dong and D. Kim, $L_p$-estimates for time fractional parabolic equations with coefficients measurable in time, Adv. Math., 345 (2019), 289-345.  doi: 10.1016/j.aim.2019.01.016.  Google Scholar

[21]

M. Fila and J. Lankeit, Lack of smoothing for bounded solutions of a semilinear parabolic equation, Adv. Nonlinear Anal., 9 (2020), 1437-1452.  doi: 10.1515/anona-2020-0059.  Google Scholar

[22]

C. G. Gal and M. Warma, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Discrete Cont. Dyn. Syst. Ser. A, 36 (2016), 1279-1319.  doi: 10.3934/dcds.2016.36.1279.  Google Scholar

[23]

T-E. GhoulN. V. Tien and H. Zaag, Construction of type I blowup solutions for a higher order semilinear parabolic equation, Adv. Nonlinear Anal., 9 (2020), 388-412.  doi: 10.1515/anona-2020-0006.  Google Scholar

[24]

V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Ration. Mech. Anal., 49 (1972), 57-78.  doi: 10.1007/BF00281474.  Google Scholar

[25]

Y. Giga and T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Commun. Partial Differ. Equ., 42 (2017), 1088-1120.  doi: 10.1080/03605302.2017.1324880.  Google Scholar

[26]

R. GorenfloY. Luchko and F. Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal., 2 (1999), 383-414.   Google Scholar

[27]

R. Gorenflo, A. A. Kilbas and F. Mainardi, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[28]

E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Second printing corrected, Springer-Verlag, Berlin, (1969).  Google Scholar

[29]

L. JinL. Li and S. Fang, The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation, Comput. Math. Appl., 73 (2017), 2221-2232.  doi: 10.1016/j.camwa.2017.03.005.  Google Scholar

[30]

V. Keyantuo and M. Warma, On the interior approximate controllability for fractional wave equations, Discrete Cont. Dyn. Syst. Ser. A, 36 (2016), 3719-3739.  doi: 10.3934/dcds.2016.36.3719.  Google Scholar

[31]

S. Khomrutai, Global well-posedness and grow-up rate of solutions for a sublinear pseudoparabolic equation, J. Differ. Equ., 260 (2015), 3598-3657.  doi: 10.1016/j.jde.2015.10.043.  Google Scholar

[32]

L. LiJ. G. Liu and L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differ. Equ., 265 (2018), 1044-1096.  doi: 10.1016/j.jde.2018.03.025.  Google Scholar

[33]

Z. P. Li and W. J. Du, Cauchy problems of pseudo-parabolic equations with inhomogeneous terms, Z. Angew. Math. Phys., 66 (2015), 3181-3203.  doi: 10.1007/s00033-015-0558-2.  Google Scholar

[34]

G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263-289.  doi: 10.3934/era.2020016.  Google Scholar

[35]

S. JiJ. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equ., 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[36]

W. LianJ. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equ., 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar

[37]

A. MaganaA. Miranville and R. Quintanilla, On the time decay in phase-lag thermoelasticity with two temperatures, Electron. Res. Arch., 27 (2019), 7-19.  doi: 10.3934/era.2019007.  Google Scholar

[38]

B. B. Mandelbrot and J. W. V. Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.  Google Scholar

[39]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[40]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal., 54 (2016), 848-873.  doi: 10.1137/14096308X.  Google Scholar

[41]

S. Pan, Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle, Electronic Research Archive, 27 (2019), 89-99.  doi: 10.3934/era.2019011.  Google Scholar

[42]

N. PanP. PucciR. Xu and B. Zhang, Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equ., 19 (2019), 615-643.  doi: 10.1007/s00028-019-00489-6.  Google Scholar

[43]

N. S. PapageorgiouaeV. D. Rădulescu and D. D. Repovă, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl., 136 (2020), 1-21.  doi: 10.1016/j.matpur.2020.02.004.  Google Scholar

[44]

V. Padron, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, T. Am. Math. Soc., 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[45]

I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Vol. 198 (1998), Elsevier, Amsterdam.  Google Scholar

[46]

M. Ralf and K. Joseph, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[47]

T. Saanouni, Global and non global solutions for a class of coupled parabolic systems, Adv. Nonlinear Anal., 9 (2020), 1383-1401.  doi: 10.1515/anona-2020-0073.  Google Scholar

[48]

E. Shivanian and A. Jafarabadi, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. Google Scholar

[49]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[50]

Y. F. SunZ. Zeng and J. Song, Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation, Numer. Algebra, Control. Optim., 10 (2020), 157-164.  doi: 10.3934/naco.2019045.  Google Scholar

[51]

E. Orsingher and L. Beghin, Fractional diffusion equations and processes with randomly varying time, Ann. Probab., 37 (2009), 206-249.  doi: 10.1214/08-AOP401.  Google Scholar

[52]

E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with Caputo time derivative, J. Differ. Equ., 262 (2017), 6018-6046.  doi: 10.1016/j.jde.2017.02.024.  Google Scholar

[53]

Tokinaga and P. Rybka, On viscosity solutions of space-fractional diffusion equations of Caputo type, SIAM J. Math. Anal., 52 (2020), 653-681.  doi: 10.1137/19M1259316.  Google Scholar

[54]

D. D. TrongE. NaneN. D. Minh and N. H. Tuan, Continuity of solutions of a class of fractional equations, Potential Anal., 49 (2018), 423-478.  doi: 10.1007/s11118-017-9663-5.  Google Scholar

[55]

X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.  doi: 10.1515/anona-2020-0141.  Google Scholar

[56]

Y. Wang and Y. Feng, theta scheme with two dimensional wavelet-like incremental unknowns for a class of porous medium diffusion-type equations, Numer. Algebra, Control. Optim., 9 (2019), 461-481.  doi: 10.3934/naco.2019027.  Google Scholar

[57]

X. WangY. ChenY. YangJ. Li and R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal., 188 (2019), 475-499.  doi: 10.1016/j.na.2019.06.019.  Google Scholar

[58]

J. R. L. Webb, Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471 (2019), 692-711.  doi: 10.1016/j.jmaa.2018.11.004.  Google Scholar

[59]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[60]

R. XuW. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321-356.  doi: 10.1007/s11425-017-9280-x.  Google Scholar

[61]

Y. Zhou, Existence and uniqueness of solutions for a system of fractional differential equations, Fract. Calc. Appl. Anal., 12 (2009), 195-204.   Google Scholar

[62]

J. Zhou, Initial boundary value problem for a inhomogeneous pseudo-parabolic equation, Electron. Res. Arch., 28 (2020), 67-90.  doi: 10.3934/era.2020005.  Google Scholar

[1]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[2]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[3]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[4]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[5]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[6]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[8]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[9]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[10]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[11]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[14]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[15]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[16]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[19]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[20]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

2019 Impact Factor: 1.105

Article outline

[Back to Top]