[1]
|
R. Adams and J. Fournier, Sobolev spaces, Academic press, 2003.
|
[2]
|
B. Ambrosio, M. Aziz-Alaoui and V. Phan, Large time behaviour and synchronization of complex networks of reaction–diffusion systems of FitzHugh–Nagumo type, IMA J. Appl. Math., 84 (2019), 416-443.
doi: 10.1093/imamat/hxy064.
|
[3]
|
M. Aziz-Alaoui, Synchronization of chaos, Encyclopedia of Mathematical Physics, Elsevier, 5 (2006), 213-226.
|
[4]
|
I. Belykh, M. Hasler, M. Lauret and H. Nijmeijer, Synchronization and graph topology, Int. J. Bifurcat. Chaos, 15 (2005), 3423-3433.
doi: 10.1142/S0218127405014143.
|
[5]
|
G. Cantin, Non identical coupled networks with a geographical model for human behaviors during catastrophic events, Int. J. Bifurcat. Chaos, 27 (2017), 1750213.
doi: 10.1142/S0218127417502133.
|
[6]
|
G. Cantin and A. Thorel, Approximation of a fourth order parabolic problem by a complex network of reaction-diffusion systems, Submitted.
|
[7]
|
G. Cantin, N. Verdière and M. Aziz-Alaoui, Large time dynamics in complex networks of reaction-diffusion systems applied to a panic model, IMA J. Appl. Math., 2019.
doi: 10.1093/imamat/hxz022.
|
[8]
|
G. Cantin, N. Verdière, V. Lanza, M. Aziz-Alaoui, R. Charrier, C. Bertelle, D. Provitolo and E. Dubos-Paillard, Control of panic behavior in a non identical network coupled with a geographical model, In PhysCon 2017, University, Firenze, 2017.
|
[9]
|
C. Carrère, Spreading speeds for a two-species competition-diffusion system, J. Differ. Equ., 264 (2018), 2133-2156.
doi: 10.1016/j.jde.2017.10.017.
|
[10]
|
G. Chen, X. Wang and X. Li, Fundamentals of Complex Networks: Models, Structures and Dynamics, John Wiley & Sons, 2014.
|
[11]
|
S. Descombes, Convergence of a splitting method of high order for reaction-diffusion systems, Math. Comput., 70(236), 2001.
doi: 10.1090/S0025-5718-00-01277-1.
|
[12]
|
M. Di. Francesco, K. Fellner and P. A. Markowich, The entropy dissipation method for spatially inhomogeneous reaction–diffusion-type systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464 (2008), 3273-3300.
doi: 10.1098/rspa.2008.0214.
|
[13]
|
A. Ducrot, M. Langlais and P. Magal, Qualitative analysis and travelling wave solutions for the si model with vertical transmission, Commun. Pure Appl. Anal., 11 (2012), 97-113.
doi: 10.3934/cpaa.2012.11.97.
|
[14]
|
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations, Research in Applied Mathematics, 1994.
|
[15]
|
M. Efendiev, A. Miranville and S. Zelik, Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. A, 460 (2004), 1107-1129.
doi: 10.1098/rspa.2003.1182.
|
[16]
|
M. Efendiev, E. Nakaguchi and K. Osaki, Dimension estimate of the exponential attractor for the chemotaxis–growth system, Glasgow Math. J., 50 (2008), 483-497.
doi: 10.1017/S0017089508004357.
|
[17]
|
M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: the groupoid formalism, B. Am. Math. Soc., 43 (2006), 305-364.
doi: 10.1090/S0273-0979-06-01108-6.
|
[18]
|
M. Haase, The functional Calculus for Sectorial Operators, Birkhäuser Basel, 2006.
doi: 10.1007/3-7643-7698-8.
|
[19]
|
N. M. Haddad, L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E. Lovejoy, J. O. Sexton, M. P. Austin and C. D. Collins, Habitat fragmentation and its lasting impact on Earth's ecosystems, Sci. Adv., 1 (2015), 9 pp.
|
[20]
|
I. Hanski, M. E. Gilpin and D. E. McCauley, Metapopulation biology, Elsevier, 1997.
|
[21]
|
S. B. Hsu, J. Jiang and F. B. Wang, Reaction–diffusion equations of two species competing for two complementary resources with internal storage, J. Differ. Equ., 251 (2011), 918-940.
doi: 10.1016/j.jde.2011.05.003.
|
[22]
|
S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.
doi: 10.1137/0153051.
|
[23]
|
S. Iwasaki, Asymptotic convergence of solutions of keller–segel equations in network shaped domains, Nonlinear Anal., 197 (2020), 111839.
doi: 10.1016/j.na.2020.111839.
|
[24]
|
O. V. Kapustyan, P. O. Kasyanov and J. Valero, Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Commun. Pure Appl. Anal., 13 (2014), 1891-1906.
doi: 10.3934/cpaa.2014.13.1891.
|
[25]
|
P. E. Kloeden and J. Simsen, Pullback attractors for non-autonomous evolution equations with spatially variable exponents, Commun. Pure Appl. Anal., 13 (2014), 2543-2557.
doi: 10.3934/cpaa.2014.13.2543.
|
[26]
|
O. Ladyzhenskaya, Attractors for semi-groups and evolution equations, CUP Archive, 1991.
doi: 10.1017/CBO9780511569418.
|
[27]
|
A. Leung, Equilibria and stabilities for competing-species reaction-diffusion equations with Dirichlet boundary data, J. Math. Anal. Appl., 73 (1980), 204-218.
doi: 10.1016/0022-247X(80)90028-1.
|
[28]
|
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Springer Science & Business Media, 2012.
|
[29]
|
J. Mallet-Paret and G. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Am. Math. Soc., 1 (1988), 805-866.
doi: 10.2307/1990993.
|
[30]
|
M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems, SIAM J. Math. Anal., 20 (1989), 816-844.
doi: 10.1137/0520057.
|
[31]
|
J. Murray, Mathematical Biology I: An Introduction, vol. 17 of Interdisciplinary Applied Mathematics., Springer, New York, NY, USA, 2002.
|
[32]
|
A. Novick-Cohen, Sur une classe d'espaces d'interpolation, Publications mathématiques de l'I.H.É.S., 19 (1964), 5–68.
|
[33]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.
|
[34]
|
M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., 78 (2010), 417-455.
doi: 10.1007/s00032-010-0133-4.
|
[35]
|
B. Rink and J. Sanders, Coupled cell networks: semigroups, Lie algebras and normal forms, T. Am. Math. Soc., 367 (2015), 3509-3548.
doi: 10.1090/S0002-9947-2014-06221-1.
|
[36]
|
P. Souplet, Global existence for reaction–diffusion systems with dissipation of mass and quadratic growth, J. Evol. Equ., 18 (2018), 1713-1720.
doi: 10.1007/s00028-018-0458-y.
|
[37]
|
G. Strang, Accurate partial difference methods, Numer. Math., 6 (1964), 37-46.
doi: 10.1007/BF01386051.
|
[38]
|
R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4684-0313-8.
|
[39]
|
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland publishing company Amsterdam New York Oxford, 1978.
|
[40]
|
J. Wang, H. Wu, T. Huang and S. Ren, Analysis and Control of Coupled Neural Networks with Reaction-Diffusion Terms, Springer, 2018.
doi: 10.1007/978-981-10-4907-1.
|
[41]
|
X. S. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete Contin. Dyn. Syst. A, 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303.
|
[42]
|
A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Science & Business Media, 2009.
doi: 10.1007/978-3-642-04631-5.
|