doi: 10.3934/cpaa.2020287

Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity

1. 

Department of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China

2. 

Department of Mathematics, Zhejiang University, Hangzhou, 310027, China

* Corresponding author

Received  May 2020 Revised  October 2020 Published  December 2020

Fund Project: The first author is supported by NSFC grant 11671353, 11401153, Zhejiang Provincial Natural Science Foundation of China under Grant No. LY18A010025. The second author is supported by NSFC grant 11671353

We prove an almost global existence result for the Klein-Gordon equation with the Kirchhoff-type nonlinearity on $ \mathbb{T}^d $ with Cauchy data of small amplitude $ \epsilon $. We show a lower bound $ \epsilon^{-2N-2} $ for the existence time with any natural number $ N $. The proof relies on the method of normal forms and induction. The structure of the nonlinearity is good enough that proceeds normal forms up to any order.

Citation: Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020287
References:
[1]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, T. Am. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar

[2]

S. N. Bernstein, Sur une classe d'$\acute{e}$quations fonctionnelles aux d$\acute{e}$riv$\acute{e}$es partielles, Izv. Akad. Nauk SSSR Ser. Mat., 4 (1940), 17-26.   Google Scholar

[3]

P. Baldi and E. Haus, On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, 33 (2020), 196-223.  doi: 10.1088/1361-6544/ab4c7b.  Google Scholar

[4]

R. W. Dickey, Infinite systems of nonlinear oscillation equations related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468.  doi: 10.1090/S0002-9939-1969-0247189-8.  Google Scholar

[5]

J. M. Delort, On long time existence for small solutions of semi-linear Klein-Gordon equaitons on the torus, J. Anal. Math., 107 (2009), 161-194.  doi: 10.1007/s11854-009-0007-2.  Google Scholar

[6]

J. M. Delort and J. Szeftel, Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Am. J. Math., 128 (2006), 1187-1218.  doi: 10.1353/ajm.2006.0038.  Google Scholar

[7]

D. Y. FangZ. Han and Q. D. Zhang, Almost global existence for the semi-linear Klein-Gordon equation on the circle, J. Differ. Equ., 262 (2017), 4610-4634.  doi: 10.1016/j.jde.2016.12.013.  Google Scholar

[8]

G. Kirchhoff, Vorlesungen $\ddot{u}$ber mathematische Physik: Mechanik, ch. 29, Teubner, Leipzig, 1876. Google Scholar

[9]

L. A. Medeiros and M. M. Miranda, Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Apl. Comput., 6 (1987), 257-276.   Google Scholar

[10]

T. Matsuyama and M. Ruzhansky, Global well-posedness of Kirchhoff system, J. Math. Pures Appl., 100 (2013), 220-240.  doi: 10.1016/j.matpur.2012.12.002.  Google Scholar

[11]

S. Spagnolo, The Cauchy problem for Kirchhoff equations, Rend. Sem. Mat. Fis. Milano, 62 (1992), 17-51.  doi: 10.1007/bf02925435.  Google Scholar

[12]

T. Yamazaki, Global solvability for the Kirchhoff equations in exterior domains of dimension larger than three, Math. methods Appl. Sci., 27 (2004), 1893-1916.  doi: 10.1002/mma.530.  Google Scholar

show all references

References:
[1]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, T. Am. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar

[2]

S. N. Bernstein, Sur une classe d'$\acute{e}$quations fonctionnelles aux d$\acute{e}$riv$\acute{e}$es partielles, Izv. Akad. Nauk SSSR Ser. Mat., 4 (1940), 17-26.   Google Scholar

[3]

P. Baldi and E. Haus, On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, 33 (2020), 196-223.  doi: 10.1088/1361-6544/ab4c7b.  Google Scholar

[4]

R. W. Dickey, Infinite systems of nonlinear oscillation equations related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468.  doi: 10.1090/S0002-9939-1969-0247189-8.  Google Scholar

[5]

J. M. Delort, On long time existence for small solutions of semi-linear Klein-Gordon equaitons on the torus, J. Anal. Math., 107 (2009), 161-194.  doi: 10.1007/s11854-009-0007-2.  Google Scholar

[6]

J. M. Delort and J. Szeftel, Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Am. J. Math., 128 (2006), 1187-1218.  doi: 10.1353/ajm.2006.0038.  Google Scholar

[7]

D. Y. FangZ. Han and Q. D. Zhang, Almost global existence for the semi-linear Klein-Gordon equation on the circle, J. Differ. Equ., 262 (2017), 4610-4634.  doi: 10.1016/j.jde.2016.12.013.  Google Scholar

[8]

G. Kirchhoff, Vorlesungen $\ddot{u}$ber mathematische Physik: Mechanik, ch. 29, Teubner, Leipzig, 1876. Google Scholar

[9]

L. A. Medeiros and M. M. Miranda, Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Apl. Comput., 6 (1987), 257-276.   Google Scholar

[10]

T. Matsuyama and M. Ruzhansky, Global well-posedness of Kirchhoff system, J. Math. Pures Appl., 100 (2013), 220-240.  doi: 10.1016/j.matpur.2012.12.002.  Google Scholar

[11]

S. Spagnolo, The Cauchy problem for Kirchhoff equations, Rend. Sem. Mat. Fis. Milano, 62 (1992), 17-51.  doi: 10.1007/bf02925435.  Google Scholar

[12]

T. Yamazaki, Global solvability for the Kirchhoff equations in exterior domains of dimension larger than three, Math. methods Appl. Sci., 27 (2004), 1893-1916.  doi: 10.1002/mma.530.  Google Scholar

[1]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[4]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[5]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[6]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[7]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[8]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[9]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[12]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[13]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[14]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[15]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[17]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[18]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[19]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (22)
  • HTML views (51)
  • Cited by (0)

Other articles
by authors

[Back to Top]