-
Previous Article
Random data theory for the cubic fourth-order nonlinear Schrödinger equation
- CPAA Home
- This Issue
-
Next Article
Homogenization and singular perturbation in porous media
Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity
1. | Department of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China |
2. | Department of Mathematics, Zhejiang University, Hangzhou, 310027, China |
We prove an almost global existence result for the Klein-Gordon equation with the Kirchhoff-type nonlinearity on $ \mathbb{T}^d $ with Cauchy data of small amplitude $ \epsilon $. We show a lower bound $ \epsilon^{-2N-2} $ for the existence time with any natural number $ N $. The proof relies on the method of normal forms and induction. The structure of the nonlinearity is good enough that proceeds normal forms up to any order.
References:
[1] |
A. Arosio and S. Panizzi,
On the well-posedness of the Kirchhoff string, T. Am. Math. Soc., 348 (1996), 305-330.
doi: 10.1090/S0002-9947-96-01532-2. |
[2] |
S. N. Bernstein, Sur une classe d'$\acute{e}$quations fonctionnelles aux d$\acute{e}$riv$\acute{e}$es partielles, Izv. Akad. Nauk SSSR Ser. Mat., 4 (1940), 17-26. Google Scholar |
[3] |
P. Baldi and E. Haus,
On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, 33 (2020), 196-223.
doi: 10.1088/1361-6544/ab4c7b. |
[4] |
R. W. Dickey,
Infinite systems of nonlinear oscillation equations related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468.
doi: 10.1090/S0002-9939-1969-0247189-8. |
[5] |
J. M. Delort,
On long time existence for small solutions of semi-linear Klein-Gordon equaitons on the torus, J. Anal. Math., 107 (2009), 161-194.
doi: 10.1007/s11854-009-0007-2. |
[6] |
J. M. Delort and J. Szeftel,
Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Am. J. Math., 128 (2006), 1187-1218.
doi: 10.1353/ajm.2006.0038. |
[7] |
D. Y. Fang, Z. Han and Q. D. Zhang,
Almost global existence for the semi-linear Klein-Gordon equation on the circle, J. Differ. Equ., 262 (2017), 4610-4634.
doi: 10.1016/j.jde.2016.12.013. |
[8] |
G. Kirchhoff, Vorlesungen $\ddot{u}$ber mathematische Physik: Mechanik, ch. 29, Teubner, Leipzig, 1876. Google Scholar |
[9] |
L. A. Medeiros and M. M. Miranda, Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Apl. Comput., 6 (1987), 257-276. Google Scholar |
[10] |
T. Matsuyama and M. Ruzhansky,
Global well-posedness of Kirchhoff system, J. Math. Pures Appl., 100 (2013), 220-240.
doi: 10.1016/j.matpur.2012.12.002. |
[11] |
S. Spagnolo,
The Cauchy problem for Kirchhoff equations, Rend. Sem. Mat. Fis. Milano, 62 (1992), 17-51.
doi: 10.1007/bf02925435. |
[12] |
T. Yamazaki,
Global solvability for the Kirchhoff equations in exterior domains of dimension larger than three, Math. methods Appl. Sci., 27 (2004), 1893-1916.
doi: 10.1002/mma.530. |
show all references
References:
[1] |
A. Arosio and S. Panizzi,
On the well-posedness of the Kirchhoff string, T. Am. Math. Soc., 348 (1996), 305-330.
doi: 10.1090/S0002-9947-96-01532-2. |
[2] |
S. N. Bernstein, Sur une classe d'$\acute{e}$quations fonctionnelles aux d$\acute{e}$riv$\acute{e}$es partielles, Izv. Akad. Nauk SSSR Ser. Mat., 4 (1940), 17-26. Google Scholar |
[3] |
P. Baldi and E. Haus,
On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, 33 (2020), 196-223.
doi: 10.1088/1361-6544/ab4c7b. |
[4] |
R. W. Dickey,
Infinite systems of nonlinear oscillation equations related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468.
doi: 10.1090/S0002-9939-1969-0247189-8. |
[5] |
J. M. Delort,
On long time existence for small solutions of semi-linear Klein-Gordon equaitons on the torus, J. Anal. Math., 107 (2009), 161-194.
doi: 10.1007/s11854-009-0007-2. |
[6] |
J. M. Delort and J. Szeftel,
Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Am. J. Math., 128 (2006), 1187-1218.
doi: 10.1353/ajm.2006.0038. |
[7] |
D. Y. Fang, Z. Han and Q. D. Zhang,
Almost global existence for the semi-linear Klein-Gordon equation on the circle, J. Differ. Equ., 262 (2017), 4610-4634.
doi: 10.1016/j.jde.2016.12.013. |
[8] |
G. Kirchhoff, Vorlesungen $\ddot{u}$ber mathematische Physik: Mechanik, ch. 29, Teubner, Leipzig, 1876. Google Scholar |
[9] |
L. A. Medeiros and M. M. Miranda, Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Apl. Comput., 6 (1987), 257-276. Google Scholar |
[10] |
T. Matsuyama and M. Ruzhansky,
Global well-posedness of Kirchhoff system, J. Math. Pures Appl., 100 (2013), 220-240.
doi: 10.1016/j.matpur.2012.12.002. |
[11] |
S. Spagnolo,
The Cauchy problem for Kirchhoff equations, Rend. Sem. Mat. Fis. Milano, 62 (1992), 17-51.
doi: 10.1007/bf02925435. |
[12] |
T. Yamazaki,
Global solvability for the Kirchhoff equations in exterior domains of dimension larger than three, Math. methods Appl. Sci., 27 (2004), 1893-1916.
doi: 10.1002/mma.530. |
[1] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[2] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[3] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[4] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[5] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[6] |
Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308 |
[7] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[8] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[9] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[10] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[11] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[12] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[13] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[14] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[15] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[16] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[17] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[18] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[19] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[20] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]