Advanced Search
Article Contents
Article Contents

Single species population dynamics in seasonal environment with short reproduction period

  • * Corresponding author

    * Corresponding author 

A. Dénes was supported by the Hungarian National Research, Development and Innovation Office grant NKFIH PD_128363 and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. G. Röst was supported by EFOP-3.6.1-16-2016-00008 and by the Hungarian National Research, Development and Innovation Office the grant NKFIH KKP_129877 and TUDFO/47138-1/2019-ITM

Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • We present a periodic nonlinear scalar delay differential equation model for a population with short reproduction period. By transforming the equation to a discrete dynamical system, we reduce the infinite dimensional problem to one dimension. We determine the basic reproduction number not merely as the spectral radius of an operator, but as an explicit formula and show that is serves as a threshold parameter for the stability of the trivial equilibrium and for permanence.

    Mathematics Subject Classification: Primary:34K05, 34K20, 92D25.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The function $ f(t,x) $ for $ x\in\{5,10,100\} $ and $ \hat\alpha = 1000 $

    Figure 2.  Solutions of (1.1) with periodic Ricker-type birth function for different values of parameter $ \hat\alpha $

    Figure 3.  Solutions of (1.1) with periodic Beverton–Holt-type birth function for different values of parameter $ \hat\alpha $

  • [1] M. Gyllenberg, I. Hanksi and T. Lindström, Continuous versus discrete single species population models with adjustable reproduction strategies, Bull. Math. Biol., 59 (1997), 679–705. doi: 10.1007/BF02458425.
    [2] E. Liz, Clark's equation: a useful difference equation for population models, predictive control, and numerical approximations, Qual. Theory Dyn. Syst., 19 (2020), 11 pp. doi: 10.1007/s12346-020-00405-1.
    [3] K. Nah and G. Röst, Stability threshold for scalar linear periodic delay differential equations, Canad. Math. Bull., 59 (2016), 849–857. doi: 10.4153/CMB-2016-043-0.
    [4] R. Qesmi, A short survey on delay differential systems with periodic coefficients, J. Appl. Anal. Comput., 8 (2018), 296–330. doi: 10.11948/2018.296.
    [5] G. Röst, Neimark–Sacker bifurcation for periodic delay differential equations, Nonlinear Anal., 60(2005), 1025–1044. doi: 10.1016/j.na.2004.08.043.
    [6] H. L. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in Applied Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.
    [7] H. R. ThiemeMathematics in Population Biology, Princeton University Press, Princeton, NJ, 2003. 
    [8] X. Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29 (2017), 67-82.  doi: 10.1007/s10884-015-9425-2.
  • 加载中



Article Metrics

HTML views(285) PDF downloads(237) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint