February  2021, 20(2): 755-762. doi: 10.3934/cpaa.2020288

Single species population dynamics in seasonal environment with short reproduction period

Bolyai Institute, University of Szeged, H-6720 Szeged, Hungary

* Corresponding author

Received  July 2020 Revised  September 2020 Published  December 2020

Fund Project: A. Dénes was supported by the Hungarian National Research, Development and Innovation Office grant NKFIH PD_128363 and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. G. Röst was supported by EFOP-3.6.1-16-2016-00008 and by the Hungarian National Research, Development and Innovation Office the grant NKFIH KKP_129877 and TUDFO/47138-1/2019-ITM

We present a periodic nonlinear scalar delay differential equation model for a population with short reproduction period. By transforming the equation to a discrete dynamical system, we reduce the infinite dimensional problem to one dimension. We determine the basic reproduction number not merely as the spectral radius of an operator, but as an explicit formula and show that is serves as a threshold parameter for the stability of the trivial equilibrium and for permanence.

Citation: Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288
References:
[1]

M. Gyllenberg, I. Hanksi and T. Lindström, Continuous versus discrete single species population models with adjustable reproduction strategies, Bull. Math. Biol., 59 (1997), 679–705. doi: 10.1007/BF02458425.  Google Scholar

[2]

E. Liz, Clark's equation: a useful difference equation for population models, predictive control, and numerical approximations, Qual. Theory Dyn. Syst., 19 (2020), 11 pp. doi: 10.1007/s12346-020-00405-1.  Google Scholar

[3]

K. Nah and G. Röst, Stability threshold for scalar linear periodic delay differential equations, Canad. Math. Bull., 59 (2016), 849–857. doi: 10.4153/CMB-2016-043-0.  Google Scholar

[4]

R. Qesmi, A short survey on delay differential systems with periodic coefficients, J. Appl. Anal. Comput., 8 (2018), 296–330. doi: 10.11948/2018.296.  Google Scholar

[5]

G. Röst, Neimark–Sacker bifurcation for periodic delay differential equations, Nonlinear Anal., 60(2005), 1025–1044. doi: 10.1016/j.na.2004.08.043.  Google Scholar

[6]

H. L. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in Applied Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[7] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, 2003.   Google Scholar
[8]

X. Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29 (2017), 67-82.  doi: 10.1007/s10884-015-9425-2.  Google Scholar

show all references

References:
[1]

M. Gyllenberg, I. Hanksi and T. Lindström, Continuous versus discrete single species population models with adjustable reproduction strategies, Bull. Math. Biol., 59 (1997), 679–705. doi: 10.1007/BF02458425.  Google Scholar

[2]

E. Liz, Clark's equation: a useful difference equation for population models, predictive control, and numerical approximations, Qual. Theory Dyn. Syst., 19 (2020), 11 pp. doi: 10.1007/s12346-020-00405-1.  Google Scholar

[3]

K. Nah and G. Röst, Stability threshold for scalar linear periodic delay differential equations, Canad. Math. Bull., 59 (2016), 849–857. doi: 10.4153/CMB-2016-043-0.  Google Scholar

[4]

R. Qesmi, A short survey on delay differential systems with periodic coefficients, J. Appl. Anal. Comput., 8 (2018), 296–330. doi: 10.11948/2018.296.  Google Scholar

[5]

G. Röst, Neimark–Sacker bifurcation for periodic delay differential equations, Nonlinear Anal., 60(2005), 1025–1044. doi: 10.1016/j.na.2004.08.043.  Google Scholar

[6]

H. L. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in Applied Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[7] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, 2003.   Google Scholar
[8]

X. Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29 (2017), 67-82.  doi: 10.1007/s10884-015-9425-2.  Google Scholar

Figure 1.  The function $ f(t,x) $ for $ x\in\{5,10,100\} $ and $ \hat\alpha = 1000 $
Figure 2.  Solutions of (1.1) with periodic Ricker-type birth function for different values of parameter $ \hat\alpha $
Figure 3.  Solutions of (1.1) with periodic Beverton–Holt-type birth function for different values of parameter $ \hat\alpha $
[1]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[2]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[3]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[4]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[5]

Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048

[6]

Serhiy Yanchuk, Leonhard Lücken, Matthias Wolfrum, Alexander Mielke. Spectrum and amplitude equations for scalar delay-differential equations with large delay. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 537-553. doi: 10.3934/dcds.2015.35.537

[7]

Yuanxian Hui, Genghong Lin, Jianshe Yu, Jia Li. A delayed differential equation model for mosquito population suppression with sterile mosquitoes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4659-4676. doi: 10.3934/dcdsb.2020118

[8]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[9]

Leonid Shaikhet. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1565-1573. doi: 10.3934/dcdsb.2017075

[10]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[11]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[12]

Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1277-1295. doi: 10.3934/dcdsb.2015.20.1277

[13]

Azmy S. Ackleh, Keng Deng. Stability of a delay equation arising from a juvenile-adult model. Mathematical Biosciences & Engineering, 2010, 7 (4) : 729-737. doi: 10.3934/mbe.2010.7.729

[14]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[15]

Suqi Ma, Zhaosheng Feng, Qishao Lu. A two-parameter geometrical criteria for delay differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 397-413. doi: 10.3934/dcdsb.2008.9.397

[16]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[17]

Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080

[18]

Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 2015, 12 (3) : 555-564. doi: 10.3934/mbe.2015.12.555

[19]

Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395

[20]

Teresa Faria, José J. Oliveira. On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2451-2472. doi: 10.3934/dcdsb.2016055

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (83)
  • HTML views (106)
  • Cited by (0)

Other articles
by authors

[Back to Top]