doi: 10.3934/cpaa.2020289

Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation

1. 

Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, via Campi 213/b, 41125 Modena, Italy

2. 

Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany

* Corresponding author

Received  April 2020 Revised  October 2020 Published  December 2020

Fund Project: The work of E. Ipocoana is supported by GNAMPA (Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica), by MIUR through the project FFABR (M. Eleuteri) and by the University of Modena and Reggio Emilia through the project FAR2017 "Equazioni differenziali: problemi evolutivi, variazionali ed applicazioni" (S. Gatti). A. Zafferi acknowledges the funding by the DFG through grant CRC1114 "Scaling Cascades in Complex Systems", Project Number 235221301, Project (C09) "Dynamics of rock dehydration on multiple scales"

The aim of this paper is to establish new regularity results for a non-isothermal Cahn-Hilliard system in the two dimensional setting. The main achievement is a crucial $ L^{\infty} $ estimate for the temperature, obtained by a suitable Moser iteration scheme. Our results in particular allow us to get a new simplified version of the uniqueness proof for the considered model.

Citation: Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020289
References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, The convergence of the solution of the Cahn-Hilliard equation to the solution of Hele-Shaw model, Arch. Ration. Mech. Anal., 128 (1994), 165-205.  doi: 10.1007/BF00375025.  Google Scholar

[2]

G. BankoffS. H. Davis and A. Oron, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980.   Google Scholar

[3]

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, New York, 2011.  Google Scholar

[4]

M. Brokate and J. Sprekels, Hysteresis and Phase Separation, Springer, New York, NY, 1996. doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[5]

J. W. Cahn, On the spinodal decomposition, Acta Metall., 9 (1961), 795-801.   Google Scholar

[6]

J. W. Cahn and J. Hilliard, Free energy of a non uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[7]

D. Cohen and J. M. Murray, A generalized diffusion model for growth and dispersion in population, J. Math. Biol., 12 (1981), 237-248.  doi: 10.1007/BF00276132.  Google Scholar

[8]

J. Dockery and I. Klapper, Role of cohesion in the material description of biofilms, Phys. Rev. E, 74 (2006), 0319021-0319028.  doi: 10.1103/PhysRevE.74.031902.  Google Scholar

[9]

C. Domb, The Critical Point, Taylor and Francis, 1996. Google Scholar

[10]

M. EleuteriS. Gatti and G. Schimperna, Regularity and long-time behavior for a thermodynamically consistent model for complex fluids in two space dimensions, Indiana Univ. Math. J., 68 (2019), 1465-1518.  doi: 10.1512/iumj.2019.68.7788.  Google Scholar

[11]

M. EleuteriE. Rocca and G. Schimperna, On a non-isothermal diffuse interface model for two phase flows of incompressible fluids, DCDS, 35 (2015), 2497-2522.  doi: 10.3934/dcds.2015.35.2497.  Google Scholar

[12]

M. EleuteriE. Rocca and G. Schimperna, Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids, Ann. Inst. H. Poincare Anal. Non Lineaire, 33 (2016), 1431-1454.  doi: 10.1016/j.anihpc.2015.05.006.  Google Scholar

[13]

C. M. Elliot and Z. Songmu, On the Cahn-Hilliard equation, Arch. Ration. Mech. Anal., 96 (1986), 339-357.  doi: 10.1007/BF00251803.  Google Scholar

[14]

M. Frémond, Non-smooth Thermomechanics, Springer, 2002. Google Scholar

[15]

M. Grasselli et al., Analysis of the Cahn-Hilliard equation with the chemical potential dependent mobility, Commun. Partial Differ. Equ., 36 (2011), 1193-1238.  doi: 10.1080/03605302.2010.543945.  Google Scholar

[16]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[17]

A. HönigB. Niethammer and F. Otto, On first-order corrections to LSW theory I: Infinite systems, J. Stat. Phys., 119 (2005), 61-122.  doi: 10.1007/s10955-004-2057-2.  Google Scholar

[18]

E. Knobloch and U. Thiele, Thin liquid films on a slightly inclined heated plate, Physica D, 190 (2004), 213-248.  doi: 10.1016/j.physd.2003.09.048.  Google Scholar

[19]

E. Ipocoana, Mathematical Modelling for Life, Ph. D. thesis, in progress. Google Scholar

[20]

Ph. Laurençot, Solutions to a Penrose-Fife model of phase-field type, J. Math. Anal. Appl., 185 (1994), 262-274.  doi: 10.1006/jmaa.1994.1247.  Google Scholar

[21]

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation for supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50.   Google Scholar

[22]

S. K. Ma, Statistical Mechanics, World Scientific, 1985. doi: 10.1142/0073.  Google Scholar

[23]

A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications, Society for Industrial and Applied Mathematics, U.S., 2019. doi: 10.1137/1.9781611975925.  Google Scholar

[24] Y. P. Raizer and Y. B. Zeldovich, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, Academic Press, 1967.   Google Scholar
[25]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, AMS. Springer, New York, NY, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[26]

S. Tremaine, On the origin of irregular Saturn's rings, Astron. J., 125 (2003), 894-901.   Google Scholar

show all references

References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, The convergence of the solution of the Cahn-Hilliard equation to the solution of Hele-Shaw model, Arch. Ration. Mech. Anal., 128 (1994), 165-205.  doi: 10.1007/BF00375025.  Google Scholar

[2]

G. BankoffS. H. Davis and A. Oron, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980.   Google Scholar

[3]

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, New York, 2011.  Google Scholar

[4]

M. Brokate and J. Sprekels, Hysteresis and Phase Separation, Springer, New York, NY, 1996. doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[5]

J. W. Cahn, On the spinodal decomposition, Acta Metall., 9 (1961), 795-801.   Google Scholar

[6]

J. W. Cahn and J. Hilliard, Free energy of a non uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[7]

D. Cohen and J. M. Murray, A generalized diffusion model for growth and dispersion in population, J. Math. Biol., 12 (1981), 237-248.  doi: 10.1007/BF00276132.  Google Scholar

[8]

J. Dockery and I. Klapper, Role of cohesion in the material description of biofilms, Phys. Rev. E, 74 (2006), 0319021-0319028.  doi: 10.1103/PhysRevE.74.031902.  Google Scholar

[9]

C. Domb, The Critical Point, Taylor and Francis, 1996. Google Scholar

[10]

M. EleuteriS. Gatti and G. Schimperna, Regularity and long-time behavior for a thermodynamically consistent model for complex fluids in two space dimensions, Indiana Univ. Math. J., 68 (2019), 1465-1518.  doi: 10.1512/iumj.2019.68.7788.  Google Scholar

[11]

M. EleuteriE. Rocca and G. Schimperna, On a non-isothermal diffuse interface model for two phase flows of incompressible fluids, DCDS, 35 (2015), 2497-2522.  doi: 10.3934/dcds.2015.35.2497.  Google Scholar

[12]

M. EleuteriE. Rocca and G. Schimperna, Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids, Ann. Inst. H. Poincare Anal. Non Lineaire, 33 (2016), 1431-1454.  doi: 10.1016/j.anihpc.2015.05.006.  Google Scholar

[13]

C. M. Elliot and Z. Songmu, On the Cahn-Hilliard equation, Arch. Ration. Mech. Anal., 96 (1986), 339-357.  doi: 10.1007/BF00251803.  Google Scholar

[14]

M. Frémond, Non-smooth Thermomechanics, Springer, 2002. Google Scholar

[15]

M. Grasselli et al., Analysis of the Cahn-Hilliard equation with the chemical potential dependent mobility, Commun. Partial Differ. Equ., 36 (2011), 1193-1238.  doi: 10.1080/03605302.2010.543945.  Google Scholar

[16]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[17]

A. HönigB. Niethammer and F. Otto, On first-order corrections to LSW theory I: Infinite systems, J. Stat. Phys., 119 (2005), 61-122.  doi: 10.1007/s10955-004-2057-2.  Google Scholar

[18]

E. Knobloch and U. Thiele, Thin liquid films on a slightly inclined heated plate, Physica D, 190 (2004), 213-248.  doi: 10.1016/j.physd.2003.09.048.  Google Scholar

[19]

E. Ipocoana, Mathematical Modelling for Life, Ph. D. thesis, in progress. Google Scholar

[20]

Ph. Laurençot, Solutions to a Penrose-Fife model of phase-field type, J. Math. Anal. Appl., 185 (1994), 262-274.  doi: 10.1006/jmaa.1994.1247.  Google Scholar

[21]

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation for supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50.   Google Scholar

[22]

S. K. Ma, Statistical Mechanics, World Scientific, 1985. doi: 10.1142/0073.  Google Scholar

[23]

A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications, Society for Industrial and Applied Mathematics, U.S., 2019. doi: 10.1137/1.9781611975925.  Google Scholar

[24] Y. P. Raizer and Y. B. Zeldovich, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, Academic Press, 1967.   Google Scholar
[25]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, AMS. Springer, New York, NY, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[26]

S. Tremaine, On the origin of irregular Saturn's rings, Astron. J., 125 (2003), 894-901.   Google Scholar

[1]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[2]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[3]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[4]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[5]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[6]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[7]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[8]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[9]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[11]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[12]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[13]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[14]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[15]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[16]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[17]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[18]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (15)
  • HTML views (40)
  • Cited by (0)

Other articles
by authors

[Back to Top]