February  2021, 20(2): 763-782. doi: 10.3934/cpaa.2020289

Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation

1. 

Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, via Campi 213/b, 41125 Modena, Italy

2. 

Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany

* Corresponding author

Received  April 2020 Revised  October 2020 Published  February 2021 Early access  December 2020

Fund Project: The work of E. Ipocoana is supported by GNAMPA (Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica), by MIUR through the project FFABR (M. Eleuteri) and by the University of Modena and Reggio Emilia through the project FAR2017 "Equazioni differenziali: problemi evolutivi, variazionali ed applicazioni" (S. Gatti). A. Zafferi acknowledges the funding by the DFG through grant CRC1114 "Scaling Cascades in Complex Systems", Project Number 235221301, Project (C09) "Dynamics of rock dehydration on multiple scales"

The aim of this paper is to establish new regularity results for a non-isothermal Cahn-Hilliard system in the two dimensional setting. The main achievement is a crucial $ L^{\infty} $ estimate for the temperature, obtained by a suitable Moser iteration scheme. Our results in particular allow us to get a new simplified version of the uniqueness proof for the considered model.

Citation: Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289
References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, The convergence of the solution of the Cahn-Hilliard equation to the solution of Hele-Shaw model, Arch. Ration. Mech. Anal., 128 (1994), 165-205.  doi: 10.1007/BF00375025.  Google Scholar

[2]

G. BankoffS. H. Davis and A. Oron, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980.   Google Scholar

[3]

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, New York, 2011.  Google Scholar

[4]

M. Brokate and J. Sprekels, Hysteresis and Phase Separation, Springer, New York, NY, 1996. doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[5]

J. W. Cahn, On the spinodal decomposition, Acta Metall., 9 (1961), 795-801.   Google Scholar

[6]

J. W. Cahn and J. Hilliard, Free energy of a non uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[7]

D. Cohen and J. M. Murray, A generalized diffusion model for growth and dispersion in population, J. Math. Biol., 12 (1981), 237-248.  doi: 10.1007/BF00276132.  Google Scholar

[8]

J. Dockery and I. Klapper, Role of cohesion in the material description of biofilms, Phys. Rev. E, 74 (2006), 0319021-0319028.  doi: 10.1103/PhysRevE.74.031902.  Google Scholar

[9]

C. Domb, The Critical Point, Taylor and Francis, 1996. Google Scholar

[10]

M. EleuteriS. Gatti and G. Schimperna, Regularity and long-time behavior for a thermodynamically consistent model for complex fluids in two space dimensions, Indiana Univ. Math. J., 68 (2019), 1465-1518.  doi: 10.1512/iumj.2019.68.7788.  Google Scholar

[11]

M. EleuteriE. Rocca and G. Schimperna, On a non-isothermal diffuse interface model for two phase flows of incompressible fluids, DCDS, 35 (2015), 2497-2522.  doi: 10.3934/dcds.2015.35.2497.  Google Scholar

[12]

M. EleuteriE. Rocca and G. Schimperna, Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids, Ann. Inst. H. Poincare Anal. Non Lineaire, 33 (2016), 1431-1454.  doi: 10.1016/j.anihpc.2015.05.006.  Google Scholar

[13]

C. M. Elliot and Z. Songmu, On the Cahn-Hilliard equation, Arch. Ration. Mech. Anal., 96 (1986), 339-357.  doi: 10.1007/BF00251803.  Google Scholar

[14]

M. Frémond, Non-smooth Thermomechanics, Springer, 2002. Google Scholar

[15]

M. Grasselli et al., Analysis of the Cahn-Hilliard equation with the chemical potential dependent mobility, Commun. Partial Differ. Equ., 36 (2011), 1193-1238.  doi: 10.1080/03605302.2010.543945.  Google Scholar

[16]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[17]

A. HönigB. Niethammer and F. Otto, On first-order corrections to LSW theory I: Infinite systems, J. Stat. Phys., 119 (2005), 61-122.  doi: 10.1007/s10955-004-2057-2.  Google Scholar

[18]

E. Knobloch and U. Thiele, Thin liquid films on a slightly inclined heated plate, Physica D, 190 (2004), 213-248.  doi: 10.1016/j.physd.2003.09.048.  Google Scholar

[19]

E. Ipocoana, Mathematical Modelling for Life, Ph. D. thesis, in progress. Google Scholar

[20]

Ph. Laurençot, Solutions to a Penrose-Fife model of phase-field type, J. Math. Anal. Appl., 185 (1994), 262-274.  doi: 10.1006/jmaa.1994.1247.  Google Scholar

[21]

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation for supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50.   Google Scholar

[22]

S. K. Ma, Statistical Mechanics, World Scientific, 1985. doi: 10.1142/0073.  Google Scholar

[23]

A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications, Society for Industrial and Applied Mathematics, U.S., 2019. doi: 10.1137/1.9781611975925.  Google Scholar

[24] Y. P. Raizer and Y. B. Zeldovich, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, Academic Press, 1967.   Google Scholar
[25]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, AMS. Springer, New York, NY, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[26]

S. Tremaine, On the origin of irregular Saturn's rings, Astron. J., 125 (2003), 894-901.   Google Scholar

show all references

References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, The convergence of the solution of the Cahn-Hilliard equation to the solution of Hele-Shaw model, Arch. Ration. Mech. Anal., 128 (1994), 165-205.  doi: 10.1007/BF00375025.  Google Scholar

[2]

G. BankoffS. H. Davis and A. Oron, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980.   Google Scholar

[3]

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, New York, 2011.  Google Scholar

[4]

M. Brokate and J. Sprekels, Hysteresis and Phase Separation, Springer, New York, NY, 1996. doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[5]

J. W. Cahn, On the spinodal decomposition, Acta Metall., 9 (1961), 795-801.   Google Scholar

[6]

J. W. Cahn and J. Hilliard, Free energy of a non uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[7]

D. Cohen and J. M. Murray, A generalized diffusion model for growth and dispersion in population, J. Math. Biol., 12 (1981), 237-248.  doi: 10.1007/BF00276132.  Google Scholar

[8]

J. Dockery and I. Klapper, Role of cohesion in the material description of biofilms, Phys. Rev. E, 74 (2006), 0319021-0319028.  doi: 10.1103/PhysRevE.74.031902.  Google Scholar

[9]

C. Domb, The Critical Point, Taylor and Francis, 1996. Google Scholar

[10]

M. EleuteriS. Gatti and G. Schimperna, Regularity and long-time behavior for a thermodynamically consistent model for complex fluids in two space dimensions, Indiana Univ. Math. J., 68 (2019), 1465-1518.  doi: 10.1512/iumj.2019.68.7788.  Google Scholar

[11]

M. EleuteriE. Rocca and G. Schimperna, On a non-isothermal diffuse interface model for two phase flows of incompressible fluids, DCDS, 35 (2015), 2497-2522.  doi: 10.3934/dcds.2015.35.2497.  Google Scholar

[12]

M. EleuteriE. Rocca and G. Schimperna, Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids, Ann. Inst. H. Poincare Anal. Non Lineaire, 33 (2016), 1431-1454.  doi: 10.1016/j.anihpc.2015.05.006.  Google Scholar

[13]

C. M. Elliot and Z. Songmu, On the Cahn-Hilliard equation, Arch. Ration. Mech. Anal., 96 (1986), 339-357.  doi: 10.1007/BF00251803.  Google Scholar

[14]

M. Frémond, Non-smooth Thermomechanics, Springer, 2002. Google Scholar

[15]

M. Grasselli et al., Analysis of the Cahn-Hilliard equation with the chemical potential dependent mobility, Commun. Partial Differ. Equ., 36 (2011), 1193-1238.  doi: 10.1080/03605302.2010.543945.  Google Scholar

[16]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[17]

A. HönigB. Niethammer and F. Otto, On first-order corrections to LSW theory I: Infinite systems, J. Stat. Phys., 119 (2005), 61-122.  doi: 10.1007/s10955-004-2057-2.  Google Scholar

[18]

E. Knobloch and U. Thiele, Thin liquid films on a slightly inclined heated plate, Physica D, 190 (2004), 213-248.  doi: 10.1016/j.physd.2003.09.048.  Google Scholar

[19]

E. Ipocoana, Mathematical Modelling for Life, Ph. D. thesis, in progress. Google Scholar

[20]

Ph. Laurençot, Solutions to a Penrose-Fife model of phase-field type, J. Math. Anal. Appl., 185 (1994), 262-274.  doi: 10.1006/jmaa.1994.1247.  Google Scholar

[21]

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation for supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50.   Google Scholar

[22]

S. K. Ma, Statistical Mechanics, World Scientific, 1985. doi: 10.1142/0073.  Google Scholar

[23]

A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications, Society for Industrial and Applied Mathematics, U.S., 2019. doi: 10.1137/1.9781611975925.  Google Scholar

[24] Y. P. Raizer and Y. B. Zeldovich, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, Academic Press, 1967.   Google Scholar
[25]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, AMS. Springer, New York, NY, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[26]

S. Tremaine, On the origin of irregular Saturn's rings, Astron. J., 125 (2003), 894-901.   Google Scholar

[1]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[2]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[3]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[4]

Kota Kumazaki, Akio Ito, Masahiro Kubo. Generalized solutions of a non-isothermal phase separation model. Conference Publications, 2009, 2009 (Special) : 476-485. doi: 10.3934/proc.2009.2009.476

[5]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[6]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[7]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[8]

Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2211-2229. doi: 10.3934/dcdss.2020186

[9]

Kota Kumazaki, Masahiro Kubo. Variational inequalities for a non-isothermal phase field model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 409-421. doi: 10.3934/dcdss.2011.4.409

[10]

Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52.

[11]

Kota Kumazaki. Periodic solutions for non-isothermal phase transition models. Conference Publications, 2011, 2011 (Special) : 891-902. doi: 10.3934/proc.2011.2011.891

[12]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[13]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[14]

Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497

[15]

Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037

[16]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[17]

L. Chupin. Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 45-68. doi: 10.3934/dcdsb.2003.3.45

[18]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[19]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[20]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (174)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]