doi: 10.3934/cpaa.2020291

The boundedness of multi-linear and multi-parameter pseudo-differential operators

1. 

School of Science, Xi'an University of Posts and Telecommunications, Xi'an, Shanxi 710121, China

2. 

School of Mathematical Sciences, Chongqing Normal University, Chongqing 400000, China

* Corresponding author

Received  June 2020 Revised  October 2020 Published  December 2020

Fund Project: The authors were supported partly by NNSF of China (Grant No.11801049), the Open Project of Key Laboratory (No.CSSXKFKTZ202004), School of Mathematical Sciences, Chongqing Normal University, the Natural Science Foundation of Chongqing (cstc2019jcyjmsxmX0374, cstc2019jcyj-msxmX0295), Technology Project of Chongqing Education Committee (Grant No. KJQN201800514)

In this paper, we establish the boundedness on $ L^r(\mathbb{R}^{n_1}\times\mathbb{R}^{n_2}) $ of bilinear and bi-parameter pseudo-differential operators whose symbols $ \sigma(x,\xi,\eta)\in S^{(0,0)}_{(1,1),(\delta_1,\delta_2)} $   for $ x,\xi,\eta\in\mathbb{R}^{n_1}\times\mathbb{R}^{n_2} $ and $ 0\leq\delta_1,\delta_2<1 $, which extends the result of Dai and Lu in [8].

Citation: Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020291
References:
[1]

Á. BényiD. MaldonadoV. Naibo and R. H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, Integral Equ. Oper. Theory, 67 (2010), 341-264.  doi: 10.1007/s00020-010-1782-y.  Google Scholar

[2]

Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators, Commun. Partial Differ. Equ., 28 (2003), 1161-1181.  doi: 10.1081/PDE-120021190.  Google Scholar

[3]

F. Bernicot, Local estimates and global continuities in Lebesgue spaces for bilinear operators, Anal. PDE, 1 (2008), 1-27.  doi: 10.2140/apde.2008.1.1.  Google Scholar

[4]

J. Chen and G. Lu, Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness, Nonlinear Anal., 101 (2014), 98-112.  doi: 10.1016/j.na.2014.01.005.  Google Scholar

[5]

J. Chen and G. Lu, Hömander type theorem on Bi-parameter Hardy spaces for Fourier multipliers with optimal smoothness, Rev. Mat. Iberoam., 34 (2018), 1541-1561.  doi: 10.4171/rmi/1035.  Google Scholar

[6]

M. Christ and J. L. Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159 (1987), 51-80.  doi: 10.1007/BF02392554.  Google Scholar

[7]

R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315-331.  doi: 10.2307/1998628.  Google Scholar

[8]

W. Dai and G. Lu, $L^p$ estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France., 143 (2013), 567-597.  doi: 10.24033/bsmf.2698.  Google Scholar

[9]

W. DingG. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear. Anal., 184 (2019), 352-380.  doi: 10.1016/j.na.2019.02.014.  Google Scholar

[10]

C. Fefferman, $L^p$ bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413-417.  doi: 10.1007/BF02764718.  Google Scholar

[11]

C. Fefferman and E. M. Stein, Some maximal inequalities, Am. J. Math., 93 (1971), 107-115.  doi: 10.2307/2373450.  Google Scholar

[12]

L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124-164.  doi: 10.1006/aima.2001.2028.  Google Scholar

[13]

Y. HanG. Lu and E. Sawyer, Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group, Anal. PDE, 7 (2014), 1465-1534.  doi: 10.2140/apde.2014.7.1465.  Google Scholar

[14]

L. Hörmander, On the $L^2$ continuity of pseudo-differential operators, Commun. Pure Appl. Math., 24 (1971), 529-535.  doi: 10.1002/cpa.3160240406.  Google Scholar

[15]

C. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1999), 1-15.  doi: 10.4310/MRL.1999.v6.n1.a1.  Google Scholar

[16]

K. Koezuka and N. Tomita, Bilinear pseudo-differential operators with symbols in $BS^{m}_{1,1}$ on Triebel-Lizorkin spaces, J. Fourier Anal. Appl., 24 (2018), 309-319.  doi: 10.1007/s00041-016-9518-2.  Google Scholar

[17]

G. Lu and L. Zhang, $L^p$ estimates for a trilinear pseudo-differential operator with flag symbols, Indiana Univ. Math. J., 66 (2017), 877-900.  doi: 10.1512/iumj.2017.66.6069.  Google Scholar

[18]

A. Miyachi and N. Tomita, Estimates for trilinear flag paraproducts on $L^{\infty}$ and Hardy spaces, Math. Z., 282 (2016), 577-613.  doi: 10.1007/s00209-015-1554-0.  Google Scholar

[19]

C. Muscalu, Paraproducts with flag singularities. I. A case study, Rev. Mat. Iberoam, 23 (2007), 705-742.  doi: 10.4171/RMI/510.  Google Scholar

[20]

C. MuscaluJ. PipherT. Tao and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296.  doi: 10.1007/BF02392566.  Google Scholar

[21]

C. MuscaluJ. PipherT. Tao and C. Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoam, 22 (2006), 963-976.  doi: 10.4171/RMI/480.  Google Scholar

[22] C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis II, Cambridge Univ. Press, 2013.   Google Scholar

show all references

References:
[1]

Á. BényiD. MaldonadoV. Naibo and R. H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, Integral Equ. Oper. Theory, 67 (2010), 341-264.  doi: 10.1007/s00020-010-1782-y.  Google Scholar

[2]

Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators, Commun. Partial Differ. Equ., 28 (2003), 1161-1181.  doi: 10.1081/PDE-120021190.  Google Scholar

[3]

F. Bernicot, Local estimates and global continuities in Lebesgue spaces for bilinear operators, Anal. PDE, 1 (2008), 1-27.  doi: 10.2140/apde.2008.1.1.  Google Scholar

[4]

J. Chen and G. Lu, Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness, Nonlinear Anal., 101 (2014), 98-112.  doi: 10.1016/j.na.2014.01.005.  Google Scholar

[5]

J. Chen and G. Lu, Hömander type theorem on Bi-parameter Hardy spaces for Fourier multipliers with optimal smoothness, Rev. Mat. Iberoam., 34 (2018), 1541-1561.  doi: 10.4171/rmi/1035.  Google Scholar

[6]

M. Christ and J. L. Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159 (1987), 51-80.  doi: 10.1007/BF02392554.  Google Scholar

[7]

R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315-331.  doi: 10.2307/1998628.  Google Scholar

[8]

W. Dai and G. Lu, $L^p$ estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France., 143 (2013), 567-597.  doi: 10.24033/bsmf.2698.  Google Scholar

[9]

W. DingG. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear. Anal., 184 (2019), 352-380.  doi: 10.1016/j.na.2019.02.014.  Google Scholar

[10]

C. Fefferman, $L^p$ bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413-417.  doi: 10.1007/BF02764718.  Google Scholar

[11]

C. Fefferman and E. M. Stein, Some maximal inequalities, Am. J. Math., 93 (1971), 107-115.  doi: 10.2307/2373450.  Google Scholar

[12]

L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124-164.  doi: 10.1006/aima.2001.2028.  Google Scholar

[13]

Y. HanG. Lu and E. Sawyer, Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group, Anal. PDE, 7 (2014), 1465-1534.  doi: 10.2140/apde.2014.7.1465.  Google Scholar

[14]

L. Hörmander, On the $L^2$ continuity of pseudo-differential operators, Commun. Pure Appl. Math., 24 (1971), 529-535.  doi: 10.1002/cpa.3160240406.  Google Scholar

[15]

C. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1999), 1-15.  doi: 10.4310/MRL.1999.v6.n1.a1.  Google Scholar

[16]

K. Koezuka and N. Tomita, Bilinear pseudo-differential operators with symbols in $BS^{m}_{1,1}$ on Triebel-Lizorkin spaces, J. Fourier Anal. Appl., 24 (2018), 309-319.  doi: 10.1007/s00041-016-9518-2.  Google Scholar

[17]

G. Lu and L. Zhang, $L^p$ estimates for a trilinear pseudo-differential operator with flag symbols, Indiana Univ. Math. J., 66 (2017), 877-900.  doi: 10.1512/iumj.2017.66.6069.  Google Scholar

[18]

A. Miyachi and N. Tomita, Estimates for trilinear flag paraproducts on $L^{\infty}$ and Hardy spaces, Math. Z., 282 (2016), 577-613.  doi: 10.1007/s00209-015-1554-0.  Google Scholar

[19]

C. Muscalu, Paraproducts with flag singularities. I. A case study, Rev. Mat. Iberoam, 23 (2007), 705-742.  doi: 10.4171/RMI/510.  Google Scholar

[20]

C. MuscaluJ. PipherT. Tao and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296.  doi: 10.1007/BF02392566.  Google Scholar

[21]

C. MuscaluJ. PipherT. Tao and C. Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoam, 22 (2006), 963-976.  doi: 10.4171/RMI/480.  Google Scholar

[22] C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis II, Cambridge Univ. Press, 2013.   Google Scholar
[1]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[2]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[3]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[4]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[9]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[10]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[11]

Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042

[12]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[13]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[14]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[15]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[16]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[17]

Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020358

[18]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[19]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[20]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (17)
  • HTML views (45)
  • Cited by (0)

Other articles
by authors

[Back to Top]