-
Previous Article
A unique continuation property for a class of parabolic differential inequalities in a bounded domain
- CPAA Home
- This Issue
-
Next Article
Multiple positive solutions for coupled Schrödinger equations with perturbations
Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity
Department of Mathematics, Guangzhou University, Guangzhou, Guangdong, 510006, China |
$ \begin{equation*} \begin{cases} (a+ b\int_{\mathbb{R}^{3}}(|(-\Delta)^{\alpha/2}u|^{2})dx)(-\Delta)^{\alpha}u+V(x)u+K(x)\phi u = |u|^{2^{\ast}-2}u+ \kappa f(x,u),\\ (-\Delta)^{\beta}\phi = K(x)u^{2}, \quad x\in\mathbb{R}^{3}, \end{cases} \end{equation*} $ |
$ a, b,\kappa $ |
$ \alpha\in(\frac{3}{4},1),\beta\in(0,1) $ |
$ 2^{\ast}_{\alpha} = \frac{6}{3-2\alpha} $ |
$ (-\Delta)^{\alpha} $ |
$ b>0 $ |
$ u_{b} $ |
$ v_b $ |
$ \kappa\gg 1 $ |
$ f:\mathbb{R}^{3}\times\mathbb{R}\rightarrow\mathbb{R} $ |
$ u_{b} $ |
$ b\to 0 $ |
References:
[1] |
T. D'Aprile and J. Wei,
Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differ. Equ., 25 (2006), 105-137.
doi: 10.1007/s00526-005-0342-9. |
[2] |
V. Benci and D. Fortunato,
Solitary waves of nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.
doi: 10.1142/S0129055X02001168. |
[3] |
G. F. Carrier,
On the non-linear vibration problem of the elastic string, Quart. Appl. Math., 3 (1945), 157-165.
doi: 10.1090/qam/12351. |
[4] |
K. Cheng and Q. Gao,
Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in $\mathbb{R}^{N}$, Acta Math. Sci., 38B (2018), 1712-1732.
doi: 10.1016/S0252-9602(18)30841-5. |
[5] |
S. Chen, X. Tang and F. Liao, Existence and asymptotic behavior of sign-changing solutions for fractional Kirchhoff-type problems in low dimensions, Nonlinear Differ. Equ. Appl., 25 (2018), 23pp.
doi: 10.1007/s00030-018-0531-9. |
[6] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
Y. Deng, S. Peng and W. Shuai,
Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500-3527.
doi: 10.1016/j.jfa.2015.09.012. |
[8] |
M. F. Furtado, L. A. Maia and E. S. Medeiros,
Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8 (2008), 353-373.
doi: 10.1515/ans-2008-0207. |
[9] |
C. Ji,
Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system in $\mathbb{R}^{3}$, Ann. Mat. Pura Appl., 198 (2019), 1563-1579.
doi: 10.1007/s10231-019-00831-2. |
[10] |
Y. Jiang and H. Zhou,
Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608.
doi: 10.1016/j.jde.2011.05.006. |
[11] |
F. Li, Y. Li and J. Shi, Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16 (2014), 1450036, 28pp.
doi: 10.1142/S0219199714500369. |
[12] |
F. Li, Z. Song and Q. Zhang,
Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity, Appl. Anal., 96 (2017), 2906-2916.
doi: 10.1080/00036811.2016.1253065. |
[13] |
H. Luo, X. Tang and Z. Gao, Ground state sign-changing solutions for fractional Kirchhoff equations in bounded domains, J. Math. Phys., 59 (2018), 031504, 15 pp.
doi: 10.1063/1.5026674. |
[14] |
M. Furtado, A. Maia Liliane and E. Medeiros,
Least energy radial sign-changing solution for the Schrödinger-Poisson system in $\mathbb{R}^{3}$ under an asymptotically cubic nonlinearity, J. Math. Anal. Appl., 474 (2019), 544-571.
doi: 10.1016/j.jmaa.2019.01.063. |
[15] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[16] |
D. Oplinger,
Frequency response of a nonlinear stretched string, J. Acoust. Soc. Am., 32 (1960), 1529-1538.
doi: 10.1121/1.1907948. |
[17] |
D. Ruiz,
The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.
doi: 10.1016/j.jfa.2006.04.005. |
[18] |
D. Ruiz,
On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.
doi: 10.1007/s00205-010-0299-5. |
[19] |
J. Sun and S. Ma,
Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differ. Equ., 260 (2016), 2119-2149.
doi: 10.1016/j.jde.2015.09.057. |
[20] |
K. Teng,
Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differ. Equ., 261 (2016), 3061-3106.
doi: 10.1016/j.jde.2016.05.022. |
[21] |
D. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501, 19 pp.
doi: 10.1063/1.5074163. |
[22] |
D. Wang, H. Zhang and W. Guan,
Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth, J. Math. Anal. Appl., 479 (2019), 2284-2301.
doi: 10.1016/j.jmaa.2019.07.052. |
[23] |
Z. Wang and H. Zhou,
Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^{3}$, Calc. Var. Partial Differ. Equ., 52 (2015), 927-943.
doi: 10.1007/s00526-014-0738-5. |
[24] |
T. Weth,
Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differ. Equ., 27 (2006), 421-437.
doi: 10.1007/s00526-006-0015-3. |
[25] |
M. Willem, Minimax Theorems, Birkhäuser, Bosten, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[26] |
C. Ye and K. Teng,
Ground state and sign-changing solutions for fractional Schrödinger-Poisson system with critical growth, Complex Var. Ellip. Equ., 65 (2020), 1360-1393.
doi: 10.1080/17476933.2019.1652278. |
[27] |
J. Zhang, J. M. do Ó and M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 19 (2017), 1650028, 16pp.
doi: 10.1142/S0219199716500280. |
[28] |
J. Zhang,
On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 428 (2015), 387-404.
doi: 10.1016/j.jmaa.2015.03.032. |
[29] |
G. Zhao, X. Zhu and Y. Li,
Existence of infinitely many solutions to a class of Kirchhoff-Schrödinger-Poisson system, Appl. Math. Comput., 256 (2015), 572-581.
doi: 10.1016/j.amc.2015.01.038. |
show all references
References:
[1] |
T. D'Aprile and J. Wei,
Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differ. Equ., 25 (2006), 105-137.
doi: 10.1007/s00526-005-0342-9. |
[2] |
V. Benci and D. Fortunato,
Solitary waves of nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.
doi: 10.1142/S0129055X02001168. |
[3] |
G. F. Carrier,
On the non-linear vibration problem of the elastic string, Quart. Appl. Math., 3 (1945), 157-165.
doi: 10.1090/qam/12351. |
[4] |
K. Cheng and Q. Gao,
Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in $\mathbb{R}^{N}$, Acta Math. Sci., 38B (2018), 1712-1732.
doi: 10.1016/S0252-9602(18)30841-5. |
[5] |
S. Chen, X. Tang and F. Liao, Existence and asymptotic behavior of sign-changing solutions for fractional Kirchhoff-type problems in low dimensions, Nonlinear Differ. Equ. Appl., 25 (2018), 23pp.
doi: 10.1007/s00030-018-0531-9. |
[6] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
Y. Deng, S. Peng and W. Shuai,
Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500-3527.
doi: 10.1016/j.jfa.2015.09.012. |
[8] |
M. F. Furtado, L. A. Maia and E. S. Medeiros,
Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8 (2008), 353-373.
doi: 10.1515/ans-2008-0207. |
[9] |
C. Ji,
Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system in $\mathbb{R}^{3}$, Ann. Mat. Pura Appl., 198 (2019), 1563-1579.
doi: 10.1007/s10231-019-00831-2. |
[10] |
Y. Jiang and H. Zhou,
Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608.
doi: 10.1016/j.jde.2011.05.006. |
[11] |
F. Li, Y. Li and J. Shi, Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16 (2014), 1450036, 28pp.
doi: 10.1142/S0219199714500369. |
[12] |
F. Li, Z. Song and Q. Zhang,
Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity, Appl. Anal., 96 (2017), 2906-2916.
doi: 10.1080/00036811.2016.1253065. |
[13] |
H. Luo, X. Tang and Z. Gao, Ground state sign-changing solutions for fractional Kirchhoff equations in bounded domains, J. Math. Phys., 59 (2018), 031504, 15 pp.
doi: 10.1063/1.5026674. |
[14] |
M. Furtado, A. Maia Liliane and E. Medeiros,
Least energy radial sign-changing solution for the Schrödinger-Poisson system in $\mathbb{R}^{3}$ under an asymptotically cubic nonlinearity, J. Math. Anal. Appl., 474 (2019), 544-571.
doi: 10.1016/j.jmaa.2019.01.063. |
[15] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[16] |
D. Oplinger,
Frequency response of a nonlinear stretched string, J. Acoust. Soc. Am., 32 (1960), 1529-1538.
doi: 10.1121/1.1907948. |
[17] |
D. Ruiz,
The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.
doi: 10.1016/j.jfa.2006.04.005. |
[18] |
D. Ruiz,
On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.
doi: 10.1007/s00205-010-0299-5. |
[19] |
J. Sun and S. Ma,
Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differ. Equ., 260 (2016), 2119-2149.
doi: 10.1016/j.jde.2015.09.057. |
[20] |
K. Teng,
Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differ. Equ., 261 (2016), 3061-3106.
doi: 10.1016/j.jde.2016.05.022. |
[21] |
D. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501, 19 pp.
doi: 10.1063/1.5074163. |
[22] |
D. Wang, H. Zhang and W. Guan,
Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth, J. Math. Anal. Appl., 479 (2019), 2284-2301.
doi: 10.1016/j.jmaa.2019.07.052. |
[23] |
Z. Wang and H. Zhou,
Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^{3}$, Calc. Var. Partial Differ. Equ., 52 (2015), 927-943.
doi: 10.1007/s00526-014-0738-5. |
[24] |
T. Weth,
Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differ. Equ., 27 (2006), 421-437.
doi: 10.1007/s00526-006-0015-3. |
[25] |
M. Willem, Minimax Theorems, Birkhäuser, Bosten, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[26] |
C. Ye and K. Teng,
Ground state and sign-changing solutions for fractional Schrödinger-Poisson system with critical growth, Complex Var. Ellip. Equ., 65 (2020), 1360-1393.
doi: 10.1080/17476933.2019.1652278. |
[27] |
J. Zhang, J. M. do Ó and M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 19 (2017), 1650028, 16pp.
doi: 10.1142/S0219199716500280. |
[28] |
J. Zhang,
On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 428 (2015), 387-404.
doi: 10.1016/j.jmaa.2015.03.032. |
[29] |
G. Zhao, X. Zhu and Y. Li,
Existence of infinitely many solutions to a class of Kirchhoff-Schrödinger-Poisson system, Appl. Math. Comput., 256 (2015), 572-581.
doi: 10.1016/j.amc.2015.01.038. |
[1] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[3] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[4] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[5] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[6] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[7] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[8] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[9] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[10] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[11] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[12] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[13] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[14] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[15] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[16] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[17] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[18] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[19] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[20] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]