• Previous Article
    Multiple positive solutions for coupled Schrödinger equations with perturbations
  • CPAA Home
  • This Issue
  • Next Article
    Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity
February  2021, 20(2): 835-865. doi: 10.3934/cpaa.2020293

Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian

1. 

School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, 050024, China

2. 

Department of Mathematical Sciences, Yeshiva University, New York, NY 10033, USA

3. 

Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada

* Corresponding author

Received  July 2020 Revised  October 2020 Published  December 2020

Fund Project: The first author was supported by CHINA SCHOLARSHIP COUNCIL

We prove a Hopf's lemma in the point-wise sense for fractional $ p $-Laplacian. The essential technique is to prove $ (-\Delta)^s_p u(x) $ is uniformly bounded in the unit ball $ B_1\subset\mathbb{R}^n $, where $ u(x) = (1-|x|^2)^s_{+} $. Also we study the global Hölder continuity of bounded positive solutions for $ (-\Delta)^s_p u(x) = f(x,u). $

Citation: Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293
References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions, Math. Ann., 310 (1998), 527-560.  doi: 10.1017/S0956792598003453.  Google Scholar

[2]

S. Barb, Topics in Geometric Analysis with Applications to Partial Differential Equations, Ph.D thesis, University of Missouri–Columbia, 2009.  Google Scholar

[3]

C. BjorlandL. Caffarelli and A. Figalli, Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894.  doi: 10.1016/j.aim.2012.03.032.  Google Scholar

[4]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[5]

L. BrascoE. Lindgren and A. Schikorra, Higher Hölder regularity for the fractional $ p $-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.  doi: 10.1016/j.aim.2018.09.009.  Google Scholar

[6]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

W. X. Chen and C. M. Li, Maximum principles for the fractional $ p $-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[8]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[9]

W. X. Chen, C. M. Li and S. J. Qi, A Hopf lemma and regularity for fractional $ p $-Laplacians, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3235-3252. Google Scholar

[10]

W. X. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific, 2020.

doi:10.1142//10550 Google Scholar

[11]

W. X. ChenY. Li and R. B. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[12]

Y. G. Chen and B. Y. Liu, Symmetry and non-existence of solutions for fractional $ p $-Laplacian systems, Nonlinear Anal., 183 (2019), 303-322.  doi: 10.1016/j.na.2019.02.023.  Google Scholar

[13]

L. M. Del Pezzo and A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional $ p $-Laplacian, J. Differ. Equ., 263 (2017), 765-778.  doi: 10.1016/j.jde.2017.02.051.  Google Scholar

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

R. K. Getoor, First passage times for symmetric stable processes in space, T. Am. Math. Soc., 101 (1961), 75-90.  doi: 10.2307/1993412.  Google Scholar

[16]

A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885. doi: 10.4310/MRL.2016.v23.n3.a14.  Google Scholar

[17]

A. IannizzottoS. Mosconi and M. Squassina, Global Hölder regularity for the fractional $ p $-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392.  doi: 10.4171/RMI/921.  Google Scholar

[18]

H. Ishii and G. Nakamura, A class of integral equations and approximation of $ p $-Laplace equations, Calc. Var. Partial Differ. Equ., 37 (2010), 485-522.  doi: 10.1007/s00526-009-0274-x.  Google Scholar

[19]

L. Y. Jin and Y. Li, A Hopf's lemma and the boundary regularity for the fractional $ p $-Laplacian, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 1477-1495. doi: 10.3934/dcds.2019063.  Google Scholar

[20]

Z. Z. Li, On Some Problems for Fractional $ p $-Laplacian Operator and Nonlinear Elliptic Systems, Ph.D thesis, University of Chinese Academy of Sciences, 2020. Google Scholar

[21]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[23]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864. doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[24]

Y. Sire and E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Commun. Partial Differ. Equ., 34 (2008), 765-784.  doi: 10.1080/03605300902892402.  Google Scholar

[25]

F. del Teso, D. Gómez-Castro and J. L. Vázquez, Three representations of the fractional $p$-Laplacian: semigroup, extension and Balakrishnan formulas, arXiv: 2010.06933. Google Scholar

[26]

L. Wu and W. X. Chen, The sliding methods for the fractional $ p $-Laplacian, Adv. Math., 361 (2020), 106933. doi: 10.1016/j.aim.2019.106933.  Google Scholar

show all references

References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions, Math. Ann., 310 (1998), 527-560.  doi: 10.1017/S0956792598003453.  Google Scholar

[2]

S. Barb, Topics in Geometric Analysis with Applications to Partial Differential Equations, Ph.D thesis, University of Missouri–Columbia, 2009.  Google Scholar

[3]

C. BjorlandL. Caffarelli and A. Figalli, Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894.  doi: 10.1016/j.aim.2012.03.032.  Google Scholar

[4]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[5]

L. BrascoE. Lindgren and A. Schikorra, Higher Hölder regularity for the fractional $ p $-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.  doi: 10.1016/j.aim.2018.09.009.  Google Scholar

[6]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

W. X. Chen and C. M. Li, Maximum principles for the fractional $ p $-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[8]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[9]

W. X. Chen, C. M. Li and S. J. Qi, A Hopf lemma and regularity for fractional $ p $-Laplacians, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3235-3252. Google Scholar

[10]

W. X. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific, 2020.

doi:10.1142//10550 Google Scholar

[11]

W. X. ChenY. Li and R. B. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[12]

Y. G. Chen and B. Y. Liu, Symmetry and non-existence of solutions for fractional $ p $-Laplacian systems, Nonlinear Anal., 183 (2019), 303-322.  doi: 10.1016/j.na.2019.02.023.  Google Scholar

[13]

L. M. Del Pezzo and A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional $ p $-Laplacian, J. Differ. Equ., 263 (2017), 765-778.  doi: 10.1016/j.jde.2017.02.051.  Google Scholar

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

R. K. Getoor, First passage times for symmetric stable processes in space, T. Am. Math. Soc., 101 (1961), 75-90.  doi: 10.2307/1993412.  Google Scholar

[16]

A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885. doi: 10.4310/MRL.2016.v23.n3.a14.  Google Scholar

[17]

A. IannizzottoS. Mosconi and M. Squassina, Global Hölder regularity for the fractional $ p $-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392.  doi: 10.4171/RMI/921.  Google Scholar

[18]

H. Ishii and G. Nakamura, A class of integral equations and approximation of $ p $-Laplace equations, Calc. Var. Partial Differ. Equ., 37 (2010), 485-522.  doi: 10.1007/s00526-009-0274-x.  Google Scholar

[19]

L. Y. Jin and Y. Li, A Hopf's lemma and the boundary regularity for the fractional $ p $-Laplacian, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 1477-1495. doi: 10.3934/dcds.2019063.  Google Scholar

[20]

Z. Z. Li, On Some Problems for Fractional $ p $-Laplacian Operator and Nonlinear Elliptic Systems, Ph.D thesis, University of Chinese Academy of Sciences, 2020. Google Scholar

[21]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[23]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864. doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[24]

Y. Sire and E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Commun. Partial Differ. Equ., 34 (2008), 765-784.  doi: 10.1080/03605300902892402.  Google Scholar

[25]

F. del Teso, D. Gómez-Castro and J. L. Vázquez, Three representations of the fractional $p$-Laplacian: semigroup, extension and Balakrishnan formulas, arXiv: 2010.06933. Google Scholar

[26]

L. Wu and W. X. Chen, The sliding methods for the fractional $ p $-Laplacian, Adv. Math., 361 (2020), 106933. doi: 10.1016/j.aim.2019.106933.  Google Scholar

[1]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[2]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[3]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[4]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[5]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

[6]

Jinguo Zhang, Dengyun Yang. Fractional $ p $-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021036

[7]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[8]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[9]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[10]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[11]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[12]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[13]

Susanna Terracini, Gianmaria Verzini, Alessandro Zilio. Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2669-2691. doi: 10.3934/dcds.2014.34.2669

[14]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[15]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[16]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[17]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[18]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[19]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[20]

Luciano Abadías, Carlos Lizama, Marina Murillo-Arcila. Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay. Communications on Pure & Applied Analysis, 2018, 17 (1) : 243-265. doi: 10.3934/cpaa.2018015

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (99)
  • HTML views (88)
  • Cited by (0)

Other articles
by authors

[Back to Top]