-
Previous Article
Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy
- CPAA Home
- This Issue
-
Next Article
On the quotient quantum graph with respect to the regular representation
Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian
1. | School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, 050024, China |
2. | Department of Mathematical Sciences, Yeshiva University, New York, NY 10033, USA |
3. | Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada |
We prove a Hopf's lemma in the point-wise sense for fractional $ p $-Laplacian. The essential technique is to prove $ (-\Delta)^s_p u(x) $ is uniformly bounded in the unit ball $ B_1\subset\mathbb{R}^n $, where $ u(x) = (1-|x|^2)^s_{+} $. Also we study the global Hölder continuity of bounded positive solutions for $ (-\Delta)^s_p u(x) = f(x,u). $
References:
[1] |
G. Alberti and G. Bellettini,
A nonlocal anisotropic model for phase transitions, Math. Ann., 310 (1998), 527-560.
doi: 10.1017/S0956792598003453. |
[2] |
S. Barb, Topics in Geometric Analysis with Applications to Partial Differential Equations, Ph.D thesis, University of Missouri–Columbia, 2009. |
[3] |
C. Bjorland, L. Caffarelli and A. Figalli,
Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894.
doi: 10.1016/j.aim.2012.03.032. |
[4] |
K. Bogdan, T. Grzywny and M. Ryznar,
Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.
doi: 10.1214/10-AOP532. |
[5] |
L. Brasco, E. Lindgren and A. Schikorra,
Higher Hölder regularity for the fractional $ p $-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.
doi: 10.1016/j.aim.2018.09.009. |
[6] |
L. A. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
W. X. Chen and C. M. Li,
Maximum principles for the fractional $ p $-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016. |
[8] |
W. X. Chen, C. M. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[9] |
W. X. Chen, C. M. Li and S. J. Qi, A Hopf lemma and regularity for fractional $ p $-Laplacians, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3235-3252. Google Scholar |
[10] |
W. X. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific, 2020. doi: |
[11] |
W. X. Chen, Y. Li and R. B. Zhang,
A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.
doi: 10.1016/j.jfa.2017.02.022. |
[12] |
Y. G. Chen and B. Y. Liu,
Symmetry and non-existence of solutions for fractional $ p $-Laplacian systems, Nonlinear Anal., 183 (2019), 303-322.
doi: 10.1016/j.na.2019.02.023. |
[13] |
L. M. Del Pezzo and A. Quaas,
A Hopf's lemma and a strong minimum principle for the fractional $ p $-Laplacian, J. Differ. Equ., 263 (2017), 765-778.
doi: 10.1016/j.jde.2017.02.051. |
[14] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[15] |
R. K. Getoor,
First passage times for symmetric stable processes in space, T. Am. Math. Soc., 101 (1961), 75-90.
doi: 10.2307/1993412. |
[16] |
A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885.
doi: 10.4310/MRL.2016.v23.n3.a14. |
[17] |
A. Iannizzotto, S. Mosconi and M. Squassina,
Global Hölder regularity for the fractional $ p $-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392.
doi: 10.4171/RMI/921. |
[18] |
H. Ishii and G. Nakamura,
A class of integral equations and approximation of $ p $-Laplace equations, Calc. Var. Partial Differ. Equ., 37 (2010), 485-522.
doi: 10.1007/s00526-009-0274-x. |
[19] |
L. Y. Jin and Y. Li, A Hopf's lemma and the boundary regularity for the fractional $ p $-Laplacian, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 1477-1495.
doi: 10.3934/dcds.2019063. |
[20] |
Z. Z. Li, On Some Problems for Fractional $ p $-Laplacian Operator and Nonlinear Elliptic Systems, Ph.D thesis, University of Chinese Academy of Sciences, 2020. Google Scholar |
[21] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[22] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[23] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[24] |
Y. Sire and E. Valdinoci,
Rigidity results for some boundary quasilinear phase transitions, Commun. Partial Differ. Equ., 34 (2008), 765-784.
doi: 10.1080/03605300902892402. |
[25] |
F. del Teso, D. Gómez-Castro and J. L. Vázquez, Three representations of the fractional $p$-Laplacian: semigroup, extension and Balakrishnan formulas, arXiv: 2010.06933. Google Scholar |
[26] |
L. Wu and W. X. Chen, The sliding methods for the fractional $ p $-Laplacian, Adv. Math., 361 (2020), 106933.
doi: 10.1016/j.aim.2019.106933. |
show all references
References:
[1] |
G. Alberti and G. Bellettini,
A nonlocal anisotropic model for phase transitions, Math. Ann., 310 (1998), 527-560.
doi: 10.1017/S0956792598003453. |
[2] |
S. Barb, Topics in Geometric Analysis with Applications to Partial Differential Equations, Ph.D thesis, University of Missouri–Columbia, 2009. |
[3] |
C. Bjorland, L. Caffarelli and A. Figalli,
Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894.
doi: 10.1016/j.aim.2012.03.032. |
[4] |
K. Bogdan, T. Grzywny and M. Ryznar,
Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.
doi: 10.1214/10-AOP532. |
[5] |
L. Brasco, E. Lindgren and A. Schikorra,
Higher Hölder regularity for the fractional $ p $-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.
doi: 10.1016/j.aim.2018.09.009. |
[6] |
L. A. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
W. X. Chen and C. M. Li,
Maximum principles for the fractional $ p $-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016. |
[8] |
W. X. Chen, C. M. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[9] |
W. X. Chen, C. M. Li and S. J. Qi, A Hopf lemma and regularity for fractional $ p $-Laplacians, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3235-3252. Google Scholar |
[10] |
W. X. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific, 2020. doi: |
[11] |
W. X. Chen, Y. Li and R. B. Zhang,
A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.
doi: 10.1016/j.jfa.2017.02.022. |
[12] |
Y. G. Chen and B. Y. Liu,
Symmetry and non-existence of solutions for fractional $ p $-Laplacian systems, Nonlinear Anal., 183 (2019), 303-322.
doi: 10.1016/j.na.2019.02.023. |
[13] |
L. M. Del Pezzo and A. Quaas,
A Hopf's lemma and a strong minimum principle for the fractional $ p $-Laplacian, J. Differ. Equ., 263 (2017), 765-778.
doi: 10.1016/j.jde.2017.02.051. |
[14] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[15] |
R. K. Getoor,
First passage times for symmetric stable processes in space, T. Am. Math. Soc., 101 (1961), 75-90.
doi: 10.2307/1993412. |
[16] |
A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885.
doi: 10.4310/MRL.2016.v23.n3.a14. |
[17] |
A. Iannizzotto, S. Mosconi and M. Squassina,
Global Hölder regularity for the fractional $ p $-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392.
doi: 10.4171/RMI/921. |
[18] |
H. Ishii and G. Nakamura,
A class of integral equations and approximation of $ p $-Laplace equations, Calc. Var. Partial Differ. Equ., 37 (2010), 485-522.
doi: 10.1007/s00526-009-0274-x. |
[19] |
L. Y. Jin and Y. Li, A Hopf's lemma and the boundary regularity for the fractional $ p $-Laplacian, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 1477-1495.
doi: 10.3934/dcds.2019063. |
[20] |
Z. Z. Li, On Some Problems for Fractional $ p $-Laplacian Operator and Nonlinear Elliptic Systems, Ph.D thesis, University of Chinese Academy of Sciences, 2020. Google Scholar |
[21] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[22] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[23] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[24] |
Y. Sire and E. Valdinoci,
Rigidity results for some boundary quasilinear phase transitions, Commun. Partial Differ. Equ., 34 (2008), 765-784.
doi: 10.1080/03605300902892402. |
[25] |
F. del Teso, D. Gómez-Castro and J. L. Vázquez, Three representations of the fractional $p$-Laplacian: semigroup, extension and Balakrishnan formulas, arXiv: 2010.06933. Google Scholar |
[26] |
L. Wu and W. X. Chen, The sliding methods for the fractional $ p $-Laplacian, Adv. Math., 361 (2020), 106933.
doi: 10.1016/j.aim.2019.106933. |
[1] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[2] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[3] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[4] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[5] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[6] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[7] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[8] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[9] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[10] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[11] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[12] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[13] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
[14] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[15] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[16] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[17] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[18] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[19] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[20] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]