doi: 10.3934/cpaa.2020295

On the quotient quantum graph with respect to the regular representation

Gazi University, Faculty of Science, Department of Mathematics, Ankara-Turkey

Received  June 2020 Revised  October 2020 Published  December 2020

Given a quantum graph $ \Gamma $, a finite symmetry group $ G $ acting on it and a representation $ R $ of $ G $, the quotient quantum graph $ \Gamma /R $ is described and constructed in the literature [1,2,18]. In particular, it was shown that the quotient graph $ \Gamma/\mathbb{C}G $ is isospectral to $ \Gamma $ by using representation theory where $ \mathbb{C}G $ denotes the regular representation of $ G $ [18]. Further, it was conjectured that $ \Gamma $ can be obtained as a quotient $ \Gamma/\mathbb{C}G $ [18]. However, proving this by construction of the quotient quantum graphs has remained as an open problem. In this paper, we solve this problem by proving by construction that for a quantum graph $ \Gamma $ and a finite symmetry group $ G $ acting on it, the quotient quantum graph $ \Gamma / \mathbb{C}G $ is not only isospectral but rather identical to $ \Gamma $ for a particular choice of a basis for $ \mathbb{C}G $. Furthermore, we prove that, this result holds for an arbitrary permutation representation of $ G $ with degree $ |G| $, whereas it doesn't hold for a permutation representation of $ G $ with degree greater than $ |G|. $

Citation: Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020295
References:
[1]

R. Band, G. Berkolaiko, C. H. Joyner and W. Liu, Quotients of finite-dimensional operators by symmetry representations, arXiv: 1711.00918v3. Google Scholar

[2]

R. Band, O. Parzanchevski and G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A: Math. Theor., 42 (2009), 175202. doi: 10.1088/1751-8113/42/17/175202.  Google Scholar

[3]

R. BandT. Shapira and U. Smilansky, Nodal domains on isospectral quantum graphs: the resolution of isospectrality?, J. Phys. A: Math. Gen., 39 (2006), 13999-14014.  doi: 10.1088/0305-4470/39/45/009.  Google Scholar

[4]

G. Berkolaiko, An elementary introduction to quantum graphs, arXiv: 1603.07356v2. Google Scholar

[5]

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, American Mathematical Society, Rhode Island, 2013. doi: 10.1090/surv/186.  Google Scholar

[6]

R. Carlson, Inverse eigenvalue problems on directed graphs, T. Am. Math. Soc., 351 (1999), 4069-4088.  doi: 10.1090/S0002-9947-99-02175-3.  Google Scholar

[7]

W. Fulton and J. Harris, Representation Theory, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0979-9.  Google Scholar

[8]

S. Gnutzmann and U. Smilansky, Quantum graphs: applications to quantum chaos and universal spectral statistics, arXiv: nlin/0605028v2. Google Scholar

[9]

C. Gordon, P. Perry and D. Schüth, Isospectral and isoscattering manifolds: a survey of techniques and examples, in Geometry, Spectral Theory, Groups and Dynamics, Contemporary Mathematics vol. 387 (eds. M. Entov, Y. Pinchover and M. Sageev), American Mathematical Society, (2005), 157–179. doi: 10.1090/conm/387/07241.  Google Scholar

[10]

C. GordonD. Webb and S. Wolpert, One cannot hear the shape of a drum, Bull. Am. Mat. Soc. (N.S.), 27 (1992), 134-138.  doi: 10.1090/S0273-0979-1992-00289-6.  Google Scholar

[11]

C. GordonD. Webb and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110 (1992), 1-22.  doi: 10.1007/BF01231320.  Google Scholar

[12]

B. Gutkin and U. Smilansky, Can one hear the shape of a graph?, J. Phys. A: Math. Gen., 31 (2001), 6061-6068.  doi: 10.1088/0305-4470/34/31/301.  Google Scholar

[13]

M. Kac, Can one hear the shape of a drum?, Am. Math. Mon., 73 (1966), 1-23.  doi: 10.2307/2313748.  Google Scholar

[14]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A: Math. Gen., 32 (1999), 595-630.  doi: 10.1088/0305-4470/32/4/006.  Google Scholar

[15]

T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79 (1997), 4794-4797.  doi: 10.1103/PhysRevLett.79.4794.  Google Scholar

[16]

P. Kuchment, Quantum graphs: an introduction and a brief survey, arXiv: 0802.3442v1. Google Scholar

[17]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014. doi: 10.1007/978-3-319-04621-1.  Google Scholar

[18]

O. Parzanchevski and R. Band, Linear representations and isospectrality with boundary conditions, J. Geom. Anal., 20 (2010), 439-471.  doi: 10.1007/s12220-009-9115-6.  Google Scholar

[19]

T. Shapira and U. Smilansky, Quantum graphs which sound the same, in Non-Linear Dynamics and Fundamental Interactions. NATO Science Series Ⅱ: Mathematics, Physics and Chemistry, vol 213. (eds. F. Khanna and D. Matrasulov), Springer, (2005), 17–29. doi: 10.1007/1-4020-3949-2_2.  Google Scholar

[20]

T. Sunada, Riemanninan coverings and isospectral manifolds, Ann. Math., 121 (1985), 169-186.  doi: 10.2307/1971195.  Google Scholar

[21]

J. von Below, Can one hear the shape of a network?, in Partial Differential Equations on Multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., vol. 219 (eds. F. Mehmeti, J. von Below and S. Nicaise), Dekker, (2001), 19–36.  Google Scholar

show all references

References:
[1]

R. Band, G. Berkolaiko, C. H. Joyner and W. Liu, Quotients of finite-dimensional operators by symmetry representations, arXiv: 1711.00918v3. Google Scholar

[2]

R. Band, O. Parzanchevski and G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A: Math. Theor., 42 (2009), 175202. doi: 10.1088/1751-8113/42/17/175202.  Google Scholar

[3]

R. BandT. Shapira and U. Smilansky, Nodal domains on isospectral quantum graphs: the resolution of isospectrality?, J. Phys. A: Math. Gen., 39 (2006), 13999-14014.  doi: 10.1088/0305-4470/39/45/009.  Google Scholar

[4]

G. Berkolaiko, An elementary introduction to quantum graphs, arXiv: 1603.07356v2. Google Scholar

[5]

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, American Mathematical Society, Rhode Island, 2013. doi: 10.1090/surv/186.  Google Scholar

[6]

R. Carlson, Inverse eigenvalue problems on directed graphs, T. Am. Math. Soc., 351 (1999), 4069-4088.  doi: 10.1090/S0002-9947-99-02175-3.  Google Scholar

[7]

W. Fulton and J. Harris, Representation Theory, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0979-9.  Google Scholar

[8]

S. Gnutzmann and U. Smilansky, Quantum graphs: applications to quantum chaos and universal spectral statistics, arXiv: nlin/0605028v2. Google Scholar

[9]

C. Gordon, P. Perry and D. Schüth, Isospectral and isoscattering manifolds: a survey of techniques and examples, in Geometry, Spectral Theory, Groups and Dynamics, Contemporary Mathematics vol. 387 (eds. M. Entov, Y. Pinchover and M. Sageev), American Mathematical Society, (2005), 157–179. doi: 10.1090/conm/387/07241.  Google Scholar

[10]

C. GordonD. Webb and S. Wolpert, One cannot hear the shape of a drum, Bull. Am. Mat. Soc. (N.S.), 27 (1992), 134-138.  doi: 10.1090/S0273-0979-1992-00289-6.  Google Scholar

[11]

C. GordonD. Webb and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110 (1992), 1-22.  doi: 10.1007/BF01231320.  Google Scholar

[12]

B. Gutkin and U. Smilansky, Can one hear the shape of a graph?, J. Phys. A: Math. Gen., 31 (2001), 6061-6068.  doi: 10.1088/0305-4470/34/31/301.  Google Scholar

[13]

M. Kac, Can one hear the shape of a drum?, Am. Math. Mon., 73 (1966), 1-23.  doi: 10.2307/2313748.  Google Scholar

[14]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A: Math. Gen., 32 (1999), 595-630.  doi: 10.1088/0305-4470/32/4/006.  Google Scholar

[15]

T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79 (1997), 4794-4797.  doi: 10.1103/PhysRevLett.79.4794.  Google Scholar

[16]

P. Kuchment, Quantum graphs: an introduction and a brief survey, arXiv: 0802.3442v1. Google Scholar

[17]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014. doi: 10.1007/978-3-319-04621-1.  Google Scholar

[18]

O. Parzanchevski and R. Band, Linear representations and isospectrality with boundary conditions, J. Geom. Anal., 20 (2010), 439-471.  doi: 10.1007/s12220-009-9115-6.  Google Scholar

[19]

T. Shapira and U. Smilansky, Quantum graphs which sound the same, in Non-Linear Dynamics and Fundamental Interactions. NATO Science Series Ⅱ: Mathematics, Physics and Chemistry, vol 213. (eds. F. Khanna and D. Matrasulov), Springer, (2005), 17–29. doi: 10.1007/1-4020-3949-2_2.  Google Scholar

[20]

T. Sunada, Riemanninan coverings and isospectral manifolds, Ann. Math., 121 (1985), 169-186.  doi: 10.2307/1971195.  Google Scholar

[21]

J. von Below, Can one hear the shape of a network?, in Partial Differential Equations on Multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., vol. 219 (eds. F. Mehmeti, J. von Below and S. Nicaise), Dekker, (2001), 19–36.  Google Scholar

Figure 1.  A star graph with $ C_{2} $ symmetry
Figure 2.  A star graph with 3 edges having the same length
Figure 3.  An equilateral tetrahedron graph
Figure 4.  We added dummy vertices and assigned directions arbitrarily
[1]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[2]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[3]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[5]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[8]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[9]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[10]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[11]

Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (14)
  • HTML views (38)
  • Cited by (0)

Other articles
by authors

[Back to Top]