February  2021, 20(2): 885-902. doi: 10.3934/cpaa.2020295

On the quotient quantum graph with respect to the regular representation

Gazi University, Faculty of Science, Department of Mathematics, Ankara-Turkey

Received  June 2020 Revised  October 2020 Published  December 2020

Given a quantum graph $ \Gamma $, a finite symmetry group $ G $ acting on it and a representation $ R $ of $ G $, the quotient quantum graph $ \Gamma /R $ is described and constructed in the literature [1,2,18]. In particular, it was shown that the quotient graph $ \Gamma/\mathbb{C}G $ is isospectral to $ \Gamma $ by using representation theory where $ \mathbb{C}G $ denotes the regular representation of $ G $ [18]. Further, it was conjectured that $ \Gamma $ can be obtained as a quotient $ \Gamma/\mathbb{C}G $ [18]. However, proving this by construction of the quotient quantum graphs has remained as an open problem. In this paper, we solve this problem by proving by construction that for a quantum graph $ \Gamma $ and a finite symmetry group $ G $ acting on it, the quotient quantum graph $ \Gamma / \mathbb{C}G $ is not only isospectral but rather identical to $ \Gamma $ for a particular choice of a basis for $ \mathbb{C}G $. Furthermore, we prove that, this result holds for an arbitrary permutation representation of $ G $ with degree $ |G| $, whereas it doesn't hold for a permutation representation of $ G $ with degree greater than $ |G|. $

Citation: Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295
References:
[1]

R. Band, G. Berkolaiko, C. H. Joyner and W. Liu, Quotients of finite-dimensional operators by symmetry representations, arXiv: 1711.00918v3. Google Scholar

[2]

R. Band, O. Parzanchevski and G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A: Math. Theor., 42 (2009), 175202. doi: 10.1088/1751-8113/42/17/175202.  Google Scholar

[3]

R. BandT. Shapira and U. Smilansky, Nodal domains on isospectral quantum graphs: the resolution of isospectrality?, J. Phys. A: Math. Gen., 39 (2006), 13999-14014.  doi: 10.1088/0305-4470/39/45/009.  Google Scholar

[4]

G. Berkolaiko, An elementary introduction to quantum graphs, arXiv: 1603.07356v2. Google Scholar

[5]

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, American Mathematical Society, Rhode Island, 2013. doi: 10.1090/surv/186.  Google Scholar

[6]

R. Carlson, Inverse eigenvalue problems on directed graphs, T. Am. Math. Soc., 351 (1999), 4069-4088.  doi: 10.1090/S0002-9947-99-02175-3.  Google Scholar

[7]

W. Fulton and J. Harris, Representation Theory, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0979-9.  Google Scholar

[8]

S. Gnutzmann and U. Smilansky, Quantum graphs: applications to quantum chaos and universal spectral statistics, arXiv: nlin/0605028v2. Google Scholar

[9]

C. Gordon, P. Perry and D. Schüth, Isospectral and isoscattering manifolds: a survey of techniques and examples, in Geometry, Spectral Theory, Groups and Dynamics, Contemporary Mathematics vol. 387 (eds. M. Entov, Y. Pinchover and M. Sageev), American Mathematical Society, (2005), 157–179. doi: 10.1090/conm/387/07241.  Google Scholar

[10]

C. GordonD. Webb and S. Wolpert, One cannot hear the shape of a drum, Bull. Am. Mat. Soc. (N.S.), 27 (1992), 134-138.  doi: 10.1090/S0273-0979-1992-00289-6.  Google Scholar

[11]

C. GordonD. Webb and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110 (1992), 1-22.  doi: 10.1007/BF01231320.  Google Scholar

[12]

B. Gutkin and U. Smilansky, Can one hear the shape of a graph?, J. Phys. A: Math. Gen., 31 (2001), 6061-6068.  doi: 10.1088/0305-4470/34/31/301.  Google Scholar

[13]

M. Kac, Can one hear the shape of a drum?, Am. Math. Mon., 73 (1966), 1-23.  doi: 10.2307/2313748.  Google Scholar

[14]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A: Math. Gen., 32 (1999), 595-630.  doi: 10.1088/0305-4470/32/4/006.  Google Scholar

[15]

T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79 (1997), 4794-4797.  doi: 10.1103/PhysRevLett.79.4794.  Google Scholar

[16]

P. Kuchment, Quantum graphs: an introduction and a brief survey, arXiv: 0802.3442v1. Google Scholar

[17]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014. doi: 10.1007/978-3-319-04621-1.  Google Scholar

[18]

O. Parzanchevski and R. Band, Linear representations and isospectrality with boundary conditions, J. Geom. Anal., 20 (2010), 439-471.  doi: 10.1007/s12220-009-9115-6.  Google Scholar

[19]

T. Shapira and U. Smilansky, Quantum graphs which sound the same, in Non-Linear Dynamics and Fundamental Interactions. NATO Science Series Ⅱ: Mathematics, Physics and Chemistry, vol 213. (eds. F. Khanna and D. Matrasulov), Springer, (2005), 17–29. doi: 10.1007/1-4020-3949-2_2.  Google Scholar

[20]

T. Sunada, Riemanninan coverings and isospectral manifolds, Ann. Math., 121 (1985), 169-186.  doi: 10.2307/1971195.  Google Scholar

[21]

J. von Below, Can one hear the shape of a network?, in Partial Differential Equations on Multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., vol. 219 (eds. F. Mehmeti, J. von Below and S. Nicaise), Dekker, (2001), 19–36.  Google Scholar

show all references

References:
[1]

R. Band, G. Berkolaiko, C. H. Joyner and W. Liu, Quotients of finite-dimensional operators by symmetry representations, arXiv: 1711.00918v3. Google Scholar

[2]

R. Band, O. Parzanchevski and G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A: Math. Theor., 42 (2009), 175202. doi: 10.1088/1751-8113/42/17/175202.  Google Scholar

[3]

R. BandT. Shapira and U. Smilansky, Nodal domains on isospectral quantum graphs: the resolution of isospectrality?, J. Phys. A: Math. Gen., 39 (2006), 13999-14014.  doi: 10.1088/0305-4470/39/45/009.  Google Scholar

[4]

G. Berkolaiko, An elementary introduction to quantum graphs, arXiv: 1603.07356v2. Google Scholar

[5]

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, American Mathematical Society, Rhode Island, 2013. doi: 10.1090/surv/186.  Google Scholar

[6]

R. Carlson, Inverse eigenvalue problems on directed graphs, T. Am. Math. Soc., 351 (1999), 4069-4088.  doi: 10.1090/S0002-9947-99-02175-3.  Google Scholar

[7]

W. Fulton and J. Harris, Representation Theory, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0979-9.  Google Scholar

[8]

S. Gnutzmann and U. Smilansky, Quantum graphs: applications to quantum chaos and universal spectral statistics, arXiv: nlin/0605028v2. Google Scholar

[9]

C. Gordon, P. Perry and D. Schüth, Isospectral and isoscattering manifolds: a survey of techniques and examples, in Geometry, Spectral Theory, Groups and Dynamics, Contemporary Mathematics vol. 387 (eds. M. Entov, Y. Pinchover and M. Sageev), American Mathematical Society, (2005), 157–179. doi: 10.1090/conm/387/07241.  Google Scholar

[10]

C. GordonD. Webb and S. Wolpert, One cannot hear the shape of a drum, Bull. Am. Mat. Soc. (N.S.), 27 (1992), 134-138.  doi: 10.1090/S0273-0979-1992-00289-6.  Google Scholar

[11]

C. GordonD. Webb and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110 (1992), 1-22.  doi: 10.1007/BF01231320.  Google Scholar

[12]

B. Gutkin and U. Smilansky, Can one hear the shape of a graph?, J. Phys. A: Math. Gen., 31 (2001), 6061-6068.  doi: 10.1088/0305-4470/34/31/301.  Google Scholar

[13]

M. Kac, Can one hear the shape of a drum?, Am. Math. Mon., 73 (1966), 1-23.  doi: 10.2307/2313748.  Google Scholar

[14]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A: Math. Gen., 32 (1999), 595-630.  doi: 10.1088/0305-4470/32/4/006.  Google Scholar

[15]

T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79 (1997), 4794-4797.  doi: 10.1103/PhysRevLett.79.4794.  Google Scholar

[16]

P. Kuchment, Quantum graphs: an introduction and a brief survey, arXiv: 0802.3442v1. Google Scholar

[17]

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014. doi: 10.1007/978-3-319-04621-1.  Google Scholar

[18]

O. Parzanchevski and R. Band, Linear representations and isospectrality with boundary conditions, J. Geom. Anal., 20 (2010), 439-471.  doi: 10.1007/s12220-009-9115-6.  Google Scholar

[19]

T. Shapira and U. Smilansky, Quantum graphs which sound the same, in Non-Linear Dynamics and Fundamental Interactions. NATO Science Series Ⅱ: Mathematics, Physics and Chemistry, vol 213. (eds. F. Khanna and D. Matrasulov), Springer, (2005), 17–29. doi: 10.1007/1-4020-3949-2_2.  Google Scholar

[20]

T. Sunada, Riemanninan coverings and isospectral manifolds, Ann. Math., 121 (1985), 169-186.  doi: 10.2307/1971195.  Google Scholar

[21]

J. von Below, Can one hear the shape of a network?, in Partial Differential Equations on Multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., vol. 219 (eds. F. Mehmeti, J. von Below and S. Nicaise), Dekker, (2001), 19–36.  Google Scholar

Figure 1.  A star graph with $ C_{2} $ symmetry
Figure 2.  A star graph with 3 edges having the same length
Figure 3.  An equilateral tetrahedron graph
Figure 4.  We added dummy vertices and assigned directions arbitrarily
[1]

Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks & Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483

[2]

Constanza Riera, Matthew G. Parker, Pantelimon Stǎnicǎ. Quantum states associated to mixed graphs and their algebraic characterization. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021015

[3]

Sergei Avdonin, Pavel Kurasov, Marlena Nowaczyk. Inverse problems for quantum trees II: Recovering matching conditions for star graphs. Inverse Problems & Imaging, 2010, 4 (4) : 579-598. doi: 10.3934/ipi.2010.4.579

[4]

Sam Northshield. Quasi-regular graphs, cogrowth, and amenability. Conference Publications, 2003, 2003 (Special) : 678-687. doi: 10.3934/proc.2003.2003.678

[5]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

[6]

Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367

[7]

Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041

[8]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[9]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[10]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[11]

Bin Yu. Regular level sets of Lyapunov graphs of nonsingular Smale flows on 3-manifolds. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1277-1290. doi: 10.3934/dcds.2011.29.1277

[12]

Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026

[13]

Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032

[14]

Litao Guo, Bernard L. S. Lin. Vulnerability of super connected split graphs and bisplit graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1179-1185. doi: 10.3934/dcdss.2019081

[15]

Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131

[16]

Cristina M. Ballantine. Ramanujan type graphs and bigraphs. Conference Publications, 2003, 2003 (Special) : 78-82. doi: 10.3934/proc.2003.2003.78

[17]

Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291

[18]

Daniele D'angeli, Alfredo Donno, Michel Matter, Tatiana Nagnibeda. Schreier graphs of the Basilica group. Journal of Modern Dynamics, 2010, 4 (1) : 167-205. doi: 10.3934/jmd.2010.4.167

[19]

Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1

[20]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (59)
  • HTML views (81)
  • Cited by (0)

Other articles
by authors

[Back to Top]