doi: 10.3934/cpaa.2020298

Ground states for a class of quasilinear Schrödinger equations with vanishing potentials

1. 

School of Mathematics and Statistics, Central South University, Changsha, 410083, China

2. 

Center for Mathematical Sciences, Wuhan University of Technology, Wuhan, 430070, China

* Corresponding author

Received  August 2020 Revised  October 2020 Published  December 2020

Fund Project: The first author is supported by Hunan Provincial Natural Science Foundation under grant number 2019JJ40355; The second author is supported by the Natural Science Foundation of China under grant number 11771127 and the Fundamental Research Funds for Central Universities (WUT: 2019IB009, 2020IB011, 2020IB019)

In this paper, we study a class of quasilinear Schrödinger equation of the form
$ -\varepsilon^2\Delta u+V(x)u-\varepsilon^2(\Delta(|u|^{2}))u = K(x)|u|^{q-2}u,\quad x\in{\mathbb{R}^N}, $
where
$ V $
,
$ K $
are smooth functions and
$ V $
may vanish at infinity,
$ 2<q<2(2^*) $
. We prove the existence of a positive ground state solution which possesses a unique local maximum and decays exponentially.
Citation: Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020298
References:
[1]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.  Google Scholar

[2]

A. AmbrosettiA. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinitey, J. Anal. Math., 98 (2006), 317-348.  doi: 10.1007/BF02790279.  Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differ. Integral Equ., 18 (2005), 1321-1332.   Google Scholar

[4]

J. F. L. Aires and M. A. S. Souto, Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials, J. Math. Anal. Appl., 416 (2014), 924-946.  doi: 10.1016/j.jmaa.2014.03.018.  Google Scholar

[5]

D. Bonheure and J. Van Schaftingen, Nonlinear Schrödinger equations with potentials vanishing at infinity, C. R. Math. Acad. Sci. Paris, 342 (2006), 903-908.  doi: 10.1016/j.crma.2006.04.011.  Google Scholar

[6]

D. Bonheure and J. Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoam., 24 (2008), 297-351.  doi: 10.4171/RMI/537.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure. Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[9]

Y. B. Deng and W. Shuai, Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity, Commun. Pure Appl. Anal., 13 (2014), 2273-2287.  doi: 10.3934/cpaa.2014.13.2273.  Google Scholar

[10]

J. M. Do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[11]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.  Google Scholar

[12]

S. Kurihura, Large-amplitude quasi-solitions in superfluid films, J. Phys. Soc. Jpn, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[13]

E. W. LaedkeK. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.  Google Scholar

[14]

H. LangeB. Toomire and P. F. Zweifel, Time-dependent dissipation in nonlinear Schrödinger systems, J. Math. Phys., 36 (1995), 1274-1283.  doi: 10.1063/1.531120.  Google Scholar

[15]

Z. X. Li, Positive solutions for a class of singular quasilinear Schrödinger equations with critical Sobolev exponent, J. Differ. Equ., 266 (2019), 7264-7290.  doi: 10.1016/j.jde.2018.11.030.  Google Scholar

[16]

Z. X. Li and Y. M. Zhang, Solutions for a class of quasilinear Schrödinger equations with critical Sobolev exponents, J. Math. Phys., 58 (2017), 021501. doi: 10.1063/1.4975009.  Google Scholar

[17]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[18]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[19]

C. Y. LiuZ. P. Wang and H. S. Zhou, Asymptotically linear Schrödinger equaiton with potential vanishing at infinity, J. Differ. Equ., 245 (2008), 201-222.  doi: 10.1016/j.jde.2008.01.006.  Google Scholar

[20]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ${\mathbb{R}}^N$, J. Differ. Equ., 229 (2006), 570-587.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[21]

A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations, Nonlinearity, 19 (2006), 937-957.  doi: 10.1088/0951-7715/19/4/009.  Google Scholar

[22]

V. Moroz and J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations with fastdecaying potentials, Calc. Var., 37 (2010), 1-27.  doi: 10.1007/s00526-009-0249-y.  Google Scholar

[23]

V. G. Makhankov and V. K. Fedanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[24]

B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Res., Notes in Math. Ser. 219, Longman Sci. Tech., Harlow, 1990.  Google Scholar

[25]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.   Google Scholar

[26]

Y. T. Shen and Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA, 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[27]

J. B. SuZ. Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Cont. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.  Google Scholar

[28]

Y. J. WangJ. Yang and Y. M. Zhang, Quasilinear elliptic equations involving the $N$-Laplacian with critical exponential growth in ${\mathbb{R}}^N$, Nonlinear Anal. TMA, 71 (2009), 6157-6169.  doi: 10.1016/j.na.2009.06.006.  Google Scholar

[29]

Z. P. Wang and H. S. Zhou, Ground state for nonlinear Schrödinger equation with sign-changing and vanishing potential, J. Math. Phys., 52 (2011), 113704. doi: 10.1063/1.3663434.  Google Scholar

show all references

References:
[1]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.  Google Scholar

[2]

A. AmbrosettiA. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinitey, J. Anal. Math., 98 (2006), 317-348.  doi: 10.1007/BF02790279.  Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differ. Integral Equ., 18 (2005), 1321-1332.   Google Scholar

[4]

J. F. L. Aires and M. A. S. Souto, Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials, J. Math. Anal. Appl., 416 (2014), 924-946.  doi: 10.1016/j.jmaa.2014.03.018.  Google Scholar

[5]

D. Bonheure and J. Van Schaftingen, Nonlinear Schrödinger equations with potentials vanishing at infinity, C. R. Math. Acad. Sci. Paris, 342 (2006), 903-908.  doi: 10.1016/j.crma.2006.04.011.  Google Scholar

[6]

D. Bonheure and J. Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoam., 24 (2008), 297-351.  doi: 10.4171/RMI/537.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure. Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[9]

Y. B. Deng and W. Shuai, Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity, Commun. Pure Appl. Anal., 13 (2014), 2273-2287.  doi: 10.3934/cpaa.2014.13.2273.  Google Scholar

[10]

J. M. Do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[11]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.  Google Scholar

[12]

S. Kurihura, Large-amplitude quasi-solitions in superfluid films, J. Phys. Soc. Jpn, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[13]

E. W. LaedkeK. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.  Google Scholar

[14]

H. LangeB. Toomire and P. F. Zweifel, Time-dependent dissipation in nonlinear Schrödinger systems, J. Math. Phys., 36 (1995), 1274-1283.  doi: 10.1063/1.531120.  Google Scholar

[15]

Z. X. Li, Positive solutions for a class of singular quasilinear Schrödinger equations with critical Sobolev exponent, J. Differ. Equ., 266 (2019), 7264-7290.  doi: 10.1016/j.jde.2018.11.030.  Google Scholar

[16]

Z. X. Li and Y. M. Zhang, Solutions for a class of quasilinear Schrödinger equations with critical Sobolev exponents, J. Math. Phys., 58 (2017), 021501. doi: 10.1063/1.4975009.  Google Scholar

[17]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[18]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[19]

C. Y. LiuZ. P. Wang and H. S. Zhou, Asymptotically linear Schrödinger equaiton with potential vanishing at infinity, J. Differ. Equ., 245 (2008), 201-222.  doi: 10.1016/j.jde.2008.01.006.  Google Scholar

[20]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ${\mathbb{R}}^N$, J. Differ. Equ., 229 (2006), 570-587.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[21]

A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations, Nonlinearity, 19 (2006), 937-957.  doi: 10.1088/0951-7715/19/4/009.  Google Scholar

[22]

V. Moroz and J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations with fastdecaying potentials, Calc. Var., 37 (2010), 1-27.  doi: 10.1007/s00526-009-0249-y.  Google Scholar

[23]

V. G. Makhankov and V. K. Fedanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[24]

B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Res., Notes in Math. Ser. 219, Longman Sci. Tech., Harlow, 1990.  Google Scholar

[25]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.   Google Scholar

[26]

Y. T. Shen and Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA, 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[27]

J. B. SuZ. Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Cont. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.  Google Scholar

[28]

Y. J. WangJ. Yang and Y. M. Zhang, Quasilinear elliptic equations involving the $N$-Laplacian with critical exponential growth in ${\mathbb{R}}^N$, Nonlinear Anal. TMA, 71 (2009), 6157-6169.  doi: 10.1016/j.na.2009.06.006.  Google Scholar

[29]

Z. P. Wang and H. S. Zhou, Ground state for nonlinear Schrödinger equation with sign-changing and vanishing potential, J. Math. Phys., 52 (2011), 113704. doi: 10.1063/1.3663434.  Google Scholar

[1]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[2]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[5]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[6]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[11]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[12]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[13]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[14]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[17]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[18]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[19]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[20]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

2019 Impact Factor: 1.105

Article outline

[Back to Top]