• Previous Article
    Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping
  • CPAA Home
  • This Issue
  • Next Article
    Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions
March  2021, 20(3): 975-994. doi: 10.3934/cpaa.2021002

Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials

Department of Analysis, Budapest University of Technology and Economics, H-1521 Budapest, Hungary

Received  June 2020 Revised  November 2020 Published  March 2021 Early access  January 2021

Fund Project: The author is supported by the NKFIH-OTKA Grants K128922 and K132097

Some weighted inequalities for the maximal operator with respect to the discrete diffusion semigroups associated with exceptional Jacobi and Jacobi-Dunkl polynomials are given. This setup allows to extend the corresponding results obtained for discrete heat semigroup recently to richer class of differential-difference operators.

Citation: Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002
References:
[1]

V. Almeida, J. J. Betancor and L. Rodríguez-Mesa, Discrete Hardy spaces and heat semigroup associated with the discrete Laplacian, Mediterr. J. Math., 16 (2019), 23pp. doi: 10.1007/s00009-019-1366-2.  Google Scholar

[2]

A. Arenas, Ó. Ciaurri and E. Labarga, Discrete harmonic analysis associated with Jacobi expansions I: The heat semigroup, J. Math. Anal. Appl., 490 (2020), 123996. doi: 10.1016/j.jmaa.2020.123996.  Google Scholar

[3]

F. Astengo and B. Di Blasio, Dynamics of the heat semigroup in Jacobi analysis, J. Math. Anal. Appl., 391 (2012), 48-56.  doi: 10.1016/j.jmaa.2012.02.033.  Google Scholar

[4]

J. J. BetancorA. J. CastroJ. C. Farina and L. Rodríguez-Mesa, Discrete harmonic analysis associated with ultraspherical expansions, Potential Anal., 53 (2020), 523-563.  doi: 10.1007/s11118-019-09777-9.  Google Scholar

[5]

F. Chouchene, Harmonic analysis associated with the Jacobi-Dunkl operator on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, J. Comput. Appl. Math., 178 (2005), 75-89.  doi: 10.1016/j.cam.2004.02.025.  Google Scholar

[6]

F. ChoucheneL. Gallardo and M. Mili, The heat semigroup for the Jacobi-Dunkl operator and the related Markov processes, Potential Anal., 25 (2006), 103-119.  doi: 10.1007/s11118-006-9012-6.  Google Scholar

[7]

F. Chouchene, Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials, Int. J. Open Problems Complex Anal., 6 (2014), 49-77.  doi: 10.12816/0006030.  Google Scholar

[8]

F. Chouchene and I. Haouala, De La Vallée Poussin Approximations and Jacobi-Dunkl Convolution Structures, Results Math., 75 (2020), b21pp. doi: 10.1007/s00025-020-1175-8.  Google Scholar

[9]

O. CiaurriT. A. GillespieL. RoncalJ. L. Torrea and J. L. Varona, Harmonic analysis associated with a discrete Laplacian, J. d'Analyse Math., 132 (2017), 109-131.  doi: 10.1007/s11854-017-0015-6.  Google Scholar

[10]

A. Durán, Corrigendum to the papers on Exceptional orthogonal polynomials, J. Approx. Theory 253 (2020), 105349. doi: 10.1016/j.jat.2019.105349.  Google Scholar

[11]

M. Á. García-FerreroD. Gómez-Ullate and R. Milson, A Bochner type classification theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl., 472 (2019), 584-626.  doi: 10.1016/j.jmaa.2018.11.042.  Google Scholar

[12]

D. Gómez-Ullate, Y. Grandati and R. Milson, Corrigendum on the proof of completeness for exceptional Hermite polynomials, J. Approx. Theory, 253 (2020), 105350. doi: 10.1016/j.jat.2019.105350.  Google Scholar

[13]

D. Gómez-UllateN. Kamran and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.  doi: 10.1016/j.jmaa.2009.05.052.  Google Scholar

[14]

D. Gómez-Ullate, F. Marcellán and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399 (2013, ) 480–495. doi: 10.1016/j.jmaa.2012.10.032.  Google Scholar

[15]

D. V. GorbachevV. I. Ivanov and S. Y. Tikhonov, Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., 49 (2019), 555-605.  doi: 10.1007/s00365-018-9435-5.  Google Scholar

[16]

Á. P. Horváth, Asymptotics for Recurrence Coefficients of $X_1$-Jacobi Exceptional Polynomials and Christoffel Function, Integr. Transf. Spec. F., 31 (2020), 87-106.  doi: 10.1080/10652469.2019.1672051.  Google Scholar

[17]

Á. P. Horváth, Multiplication operator and exceptional Jacobi polynomials, arXiv: 2003.11861. Google Scholar

[18]

P. Nevai, Géza Freud, Orthogonal Polynomials and Christoffel Functions, J. Approx Theory, 48 (1986), 3-167.  doi: 10.1016/0021-9045(86)90016-X.  Google Scholar

[19]

S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials : II, J Math Phys., 56 (2015), 053506. doi: 10.1063/1.4921230.  Google Scholar

[20]

E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb., 46 (1983), 105–l17.  Google Scholar

[21]

M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Springer, Berlin, 2003. doi: 10.1007/3-540-44945-0_3.  Google Scholar

[22] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, NJ, 1970.   Google Scholar
[23]

M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society, New York, 1932. doi: 10.1090/coll/015.  Google Scholar

[24]

G. Szegő, Orthogonal Polynomials, 4$^{th}$ edition, American Mathematical Society, Providence RI, 1975  Google Scholar

[25]

O. L. Vinogradov, On the norms of generalized translation operators generated by the Jacobi-Dunkl operators, J. of Math. Sci., 182 (2012), 603-616.  doi: 10.1007/s10958-012-0765-8.  Google Scholar

show all references

References:
[1]

V. Almeida, J. J. Betancor and L. Rodríguez-Mesa, Discrete Hardy spaces and heat semigroup associated with the discrete Laplacian, Mediterr. J. Math., 16 (2019), 23pp. doi: 10.1007/s00009-019-1366-2.  Google Scholar

[2]

A. Arenas, Ó. Ciaurri and E. Labarga, Discrete harmonic analysis associated with Jacobi expansions I: The heat semigroup, J. Math. Anal. Appl., 490 (2020), 123996. doi: 10.1016/j.jmaa.2020.123996.  Google Scholar

[3]

F. Astengo and B. Di Blasio, Dynamics of the heat semigroup in Jacobi analysis, J. Math. Anal. Appl., 391 (2012), 48-56.  doi: 10.1016/j.jmaa.2012.02.033.  Google Scholar

[4]

J. J. BetancorA. J. CastroJ. C. Farina and L. Rodríguez-Mesa, Discrete harmonic analysis associated with ultraspherical expansions, Potential Anal., 53 (2020), 523-563.  doi: 10.1007/s11118-019-09777-9.  Google Scholar

[5]

F. Chouchene, Harmonic analysis associated with the Jacobi-Dunkl operator on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, J. Comput. Appl. Math., 178 (2005), 75-89.  doi: 10.1016/j.cam.2004.02.025.  Google Scholar

[6]

F. ChoucheneL. Gallardo and M. Mili, The heat semigroup for the Jacobi-Dunkl operator and the related Markov processes, Potential Anal., 25 (2006), 103-119.  doi: 10.1007/s11118-006-9012-6.  Google Scholar

[7]

F. Chouchene, Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials, Int. J. Open Problems Complex Anal., 6 (2014), 49-77.  doi: 10.12816/0006030.  Google Scholar

[8]

F. Chouchene and I. Haouala, De La Vallée Poussin Approximations and Jacobi-Dunkl Convolution Structures, Results Math., 75 (2020), b21pp. doi: 10.1007/s00025-020-1175-8.  Google Scholar

[9]

O. CiaurriT. A. GillespieL. RoncalJ. L. Torrea and J. L. Varona, Harmonic analysis associated with a discrete Laplacian, J. d'Analyse Math., 132 (2017), 109-131.  doi: 10.1007/s11854-017-0015-6.  Google Scholar

[10]

A. Durán, Corrigendum to the papers on Exceptional orthogonal polynomials, J. Approx. Theory 253 (2020), 105349. doi: 10.1016/j.jat.2019.105349.  Google Scholar

[11]

M. Á. García-FerreroD. Gómez-Ullate and R. Milson, A Bochner type classification theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl., 472 (2019), 584-626.  doi: 10.1016/j.jmaa.2018.11.042.  Google Scholar

[12]

D. Gómez-Ullate, Y. Grandati and R. Milson, Corrigendum on the proof of completeness for exceptional Hermite polynomials, J. Approx. Theory, 253 (2020), 105350. doi: 10.1016/j.jat.2019.105350.  Google Scholar

[13]

D. Gómez-UllateN. Kamran and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.  doi: 10.1016/j.jmaa.2009.05.052.  Google Scholar

[14]

D. Gómez-Ullate, F. Marcellán and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399 (2013, ) 480–495. doi: 10.1016/j.jmaa.2012.10.032.  Google Scholar

[15]

D. V. GorbachevV. I. Ivanov and S. Y. Tikhonov, Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., 49 (2019), 555-605.  doi: 10.1007/s00365-018-9435-5.  Google Scholar

[16]

Á. P. Horváth, Asymptotics for Recurrence Coefficients of $X_1$-Jacobi Exceptional Polynomials and Christoffel Function, Integr. Transf. Spec. F., 31 (2020), 87-106.  doi: 10.1080/10652469.2019.1672051.  Google Scholar

[17]

Á. P. Horváth, Multiplication operator and exceptional Jacobi polynomials, arXiv: 2003.11861. Google Scholar

[18]

P. Nevai, Géza Freud, Orthogonal Polynomials and Christoffel Functions, J. Approx Theory, 48 (1986), 3-167.  doi: 10.1016/0021-9045(86)90016-X.  Google Scholar

[19]

S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials : II, J Math Phys., 56 (2015), 053506. doi: 10.1063/1.4921230.  Google Scholar

[20]

E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb., 46 (1983), 105–l17.  Google Scholar

[21]

M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Springer, Berlin, 2003. doi: 10.1007/3-540-44945-0_3.  Google Scholar

[22] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, NJ, 1970.   Google Scholar
[23]

M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society, New York, 1932. doi: 10.1090/coll/015.  Google Scholar

[24]

G. Szegő, Orthogonal Polynomials, 4$^{th}$ edition, American Mathematical Society, Providence RI, 1975  Google Scholar

[25]

O. L. Vinogradov, On the norms of generalized translation operators generated by the Jacobi-Dunkl operators, J. of Math. Sci., 182 (2012), 603-616.  doi: 10.1007/s10958-012-0765-8.  Google Scholar

[1]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

[2]

Alexandre Alves, Mostafa Salarinoghabi. On the family of cubic parabolic polynomials. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021121

[3]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[4]

Moises Delgado, Heeralal Janwa. Some new results on the conjecture on exceptional APN functions and absolutely irreducible polynomials: The gold case. Advances in Mathematics of Communications, 2017, 11 (2) : 389-396. doi: 10.3934/amc.2017033

[5]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

[6]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[7]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[8]

Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1447-1478. doi: 10.3934/cpaa.2021028

[10]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[11]

Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051

[12]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[13]

Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019

[14]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[15]

Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations & Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027

[16]

Xingxing Liu. Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5505-5521. doi: 10.3934/dcds.2018242

[17]

Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021093

[18]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[19]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[20]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (142)
  • HTML views (176)
  • Cited by (0)

Other articles
by authors

[Back to Top]