-
Previous Article
Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping
- CPAA Home
- This Issue
-
Next Article
Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions
Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials
Department of Analysis, Budapest University of Technology and Economics, H-1521 Budapest, Hungary |
Some weighted inequalities for the maximal operator with respect to the discrete diffusion semigroups associated with exceptional Jacobi and Jacobi-Dunkl polynomials are given. This setup allows to extend the corresponding results obtained for discrete heat semigroup recently to richer class of differential-difference operators.
References:
[1] |
V. Almeida, J. J. Betancor and L. Rodríguez-Mesa, Discrete Hardy spaces and heat semigroup associated with the discrete Laplacian, Mediterr. J. Math., 16 (2019), 23pp.
doi: 10.1007/s00009-019-1366-2. |
[2] |
A. Arenas, Ó. Ciaurri and E. Labarga, Discrete harmonic analysis associated with Jacobi expansions I: The heat semigroup, J. Math. Anal. Appl., 490 (2020), 123996.
doi: 10.1016/j.jmaa.2020.123996. |
[3] |
F. Astengo and B. Di Blasio,
Dynamics of the heat semigroup in Jacobi analysis, J. Math. Anal. Appl., 391 (2012), 48-56.
doi: 10.1016/j.jmaa.2012.02.033. |
[4] |
J. J. Betancor, A. J. Castro, J. C. Farina and L. Rodríguez-Mesa,
Discrete harmonic analysis associated with ultraspherical expansions, Potential Anal., 53 (2020), 523-563.
doi: 10.1007/s11118-019-09777-9. |
[5] |
F. Chouchene,
Harmonic analysis associated with the Jacobi-Dunkl operator on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, J. Comput. Appl. Math., 178 (2005), 75-89.
doi: 10.1016/j.cam.2004.02.025. |
[6] |
F. Chouchene, L. Gallardo and M. Mili,
The heat semigroup for the Jacobi-Dunkl operator and the related Markov processes, Potential Anal., 25 (2006), 103-119.
doi: 10.1007/s11118-006-9012-6. |
[7] |
F. Chouchene,
Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials, Int. J. Open Problems Complex Anal., 6 (2014), 49-77.
doi: 10.12816/0006030. |
[8] |
F. Chouchene and I. Haouala, De La Vallée Poussin Approximations and Jacobi-Dunkl Convolution Structures, Results Math., 75 (2020), b21pp.
doi: 10.1007/s00025-020-1175-8. |
[9] |
O. Ciaurri, T. A. Gillespie, L. Roncal, J. L. Torrea and J. L. Varona,
Harmonic analysis associated with a discrete Laplacian, J. d'Analyse Math., 132 (2017), 109-131.
doi: 10.1007/s11854-017-0015-6. |
[10] |
A. Durán, Corrigendum to the papers on Exceptional orthogonal polynomials, J. Approx. Theory 253 (2020), 105349.
doi: 10.1016/j.jat.2019.105349. |
[11] |
M. Á. García-Ferrero, D. Gómez-Ullate and R. Milson,
A Bochner type classification theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl., 472 (2019), 584-626.
doi: 10.1016/j.jmaa.2018.11.042. |
[12] |
D. Gómez-Ullate, Y. Grandati and R. Milson, Corrigendum on the proof of completeness for exceptional Hermite polynomials, J. Approx. Theory, 253 (2020), 105350.
doi: 10.1016/j.jat.2019.105350. |
[13] |
D. Gómez-Ullate, N. Kamran and R. Milson,
An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.
doi: 10.1016/j.jmaa.2009.05.052. |
[14] |
D. Gómez-Ullate, F. Marcellán and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399 (2013, ) 480–495.
doi: 10.1016/j.jmaa.2012.10.032. |
[15] |
D. V. Gorbachev, V. I. Ivanov and S. Y. Tikhonov,
Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., 49 (2019), 555-605.
doi: 10.1007/s00365-018-9435-5. |
[16] |
Á. P. Horváth,
Asymptotics for Recurrence Coefficients of $X_1$-Jacobi Exceptional Polynomials and Christoffel Function, Integr. Transf. Spec. F., 31 (2020), 87-106.
doi: 10.1080/10652469.2019.1672051. |
[17] |
Á. P. Horváth, Multiplication operator and exceptional Jacobi polynomials, arXiv: 2003.11861. Google Scholar |
[18] |
P. Nevai,
Géza Freud, Orthogonal Polynomials and Christoffel Functions, J. Approx Theory, 48 (1986), 3-167.
doi: 10.1016/0021-9045(86)90016-X. |
[19] |
S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials : II, J Math Phys., 56 (2015), 053506.
doi: 10.1063/1.4921230. |
[20] |
E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb., 46 (1983), 105–l17. |
[21] |
M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Springer, Berlin, 2003.
doi: 10.1007/3-540-44945-0_3. |
[22] |
E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, NJ, 1970.
![]() |
[23] |
M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society, New York, 1932.
doi: 10.1090/coll/015. |
[24] |
G. Szegő, Orthogonal Polynomials, 4$^{th}$ edition, American Mathematical Society, Providence RI, 1975 |
[25] |
O. L. Vinogradov,
On the norms of generalized translation operators generated by the Jacobi-Dunkl operators, J. of Math. Sci., 182 (2012), 603-616.
doi: 10.1007/s10958-012-0765-8. |
show all references
References:
[1] |
V. Almeida, J. J. Betancor and L. Rodríguez-Mesa, Discrete Hardy spaces and heat semigroup associated with the discrete Laplacian, Mediterr. J. Math., 16 (2019), 23pp.
doi: 10.1007/s00009-019-1366-2. |
[2] |
A. Arenas, Ó. Ciaurri and E. Labarga, Discrete harmonic analysis associated with Jacobi expansions I: The heat semigroup, J. Math. Anal. Appl., 490 (2020), 123996.
doi: 10.1016/j.jmaa.2020.123996. |
[3] |
F. Astengo and B. Di Blasio,
Dynamics of the heat semigroup in Jacobi analysis, J. Math. Anal. Appl., 391 (2012), 48-56.
doi: 10.1016/j.jmaa.2012.02.033. |
[4] |
J. J. Betancor, A. J. Castro, J. C. Farina and L. Rodríguez-Mesa,
Discrete harmonic analysis associated with ultraspherical expansions, Potential Anal., 53 (2020), 523-563.
doi: 10.1007/s11118-019-09777-9. |
[5] |
F. Chouchene,
Harmonic analysis associated with the Jacobi-Dunkl operator on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, J. Comput. Appl. Math., 178 (2005), 75-89.
doi: 10.1016/j.cam.2004.02.025. |
[6] |
F. Chouchene, L. Gallardo and M. Mili,
The heat semigroup for the Jacobi-Dunkl operator and the related Markov processes, Potential Anal., 25 (2006), 103-119.
doi: 10.1007/s11118-006-9012-6. |
[7] |
F. Chouchene,
Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials, Int. J. Open Problems Complex Anal., 6 (2014), 49-77.
doi: 10.12816/0006030. |
[8] |
F. Chouchene and I. Haouala, De La Vallée Poussin Approximations and Jacobi-Dunkl Convolution Structures, Results Math., 75 (2020), b21pp.
doi: 10.1007/s00025-020-1175-8. |
[9] |
O. Ciaurri, T. A. Gillespie, L. Roncal, J. L. Torrea and J. L. Varona,
Harmonic analysis associated with a discrete Laplacian, J. d'Analyse Math., 132 (2017), 109-131.
doi: 10.1007/s11854-017-0015-6. |
[10] |
A. Durán, Corrigendum to the papers on Exceptional orthogonal polynomials, J. Approx. Theory 253 (2020), 105349.
doi: 10.1016/j.jat.2019.105349. |
[11] |
M. Á. García-Ferrero, D. Gómez-Ullate and R. Milson,
A Bochner type classification theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl., 472 (2019), 584-626.
doi: 10.1016/j.jmaa.2018.11.042. |
[12] |
D. Gómez-Ullate, Y. Grandati and R. Milson, Corrigendum on the proof of completeness for exceptional Hermite polynomials, J. Approx. Theory, 253 (2020), 105350.
doi: 10.1016/j.jat.2019.105350. |
[13] |
D. Gómez-Ullate, N. Kamran and R. Milson,
An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.
doi: 10.1016/j.jmaa.2009.05.052. |
[14] |
D. Gómez-Ullate, F. Marcellán and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399 (2013, ) 480–495.
doi: 10.1016/j.jmaa.2012.10.032. |
[15] |
D. V. Gorbachev, V. I. Ivanov and S. Y. Tikhonov,
Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., 49 (2019), 555-605.
doi: 10.1007/s00365-018-9435-5. |
[16] |
Á. P. Horváth,
Asymptotics for Recurrence Coefficients of $X_1$-Jacobi Exceptional Polynomials and Christoffel Function, Integr. Transf. Spec. F., 31 (2020), 87-106.
doi: 10.1080/10652469.2019.1672051. |
[17] |
Á. P. Horváth, Multiplication operator and exceptional Jacobi polynomials, arXiv: 2003.11861. Google Scholar |
[18] |
P. Nevai,
Géza Freud, Orthogonal Polynomials and Christoffel Functions, J. Approx Theory, 48 (1986), 3-167.
doi: 10.1016/0021-9045(86)90016-X. |
[19] |
S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials : II, J Math Phys., 56 (2015), 053506.
doi: 10.1063/1.4921230. |
[20] |
E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb., 46 (1983), 105–l17. |
[21] |
M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Springer, Berlin, 2003.
doi: 10.1007/3-540-44945-0_3. |
[22] |
E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, NJ, 1970.
![]() |
[23] |
M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society, New York, 1932.
doi: 10.1090/coll/015. |
[24] |
G. Szegő, Orthogonal Polynomials, 4$^{th}$ edition, American Mathematical Society, Providence RI, 1975 |
[25] |
O. L. Vinogradov,
On the norms of generalized translation operators generated by the Jacobi-Dunkl operators, J. of Math. Sci., 182 (2012), 603-616.
doi: 10.1007/s10958-012-0765-8. |
[1] |
Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005 |
[2] |
Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183 |
[3] |
Moises Delgado, Heeralal Janwa. Some new results on the conjecture on exceptional APN functions and absolutely irreducible polynomials: The gold case. Advances in Mathematics of Communications, 2017, 11 (2) : 389-396. doi: 10.3934/amc.2017033 |
[4] |
Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251 |
[5] |
Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181 |
[6] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[7] |
David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629 |
[8] |
Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013 |
[9] |
Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295 |
[10] |
Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051 |
[11] |
Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81 |
[12] |
Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019 |
[13] |
Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967 |
[14] |
Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations & Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027 |
[15] |
Xingxing Liu. Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5505-5521. doi: 10.3934/dcds.2018242 |
[16] |
Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461 |
[17] |
Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 |
[18] |
María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207 |
[19] |
Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369 |
[20] |
Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]