• Previous Article
    Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping
  • CPAA Home
  • This Issue
  • Next Article
    Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions
March  2021, 20(3): 975-994. doi: 10.3934/cpaa.2021002

Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials

Department of Analysis, Budapest University of Technology and Economics, H-1521 Budapest, Hungary

Received  June 2020 Revised  November 2020 Published  January 2021

Fund Project: The author is supported by the NKFIH-OTKA Grants K128922 and K132097

Some weighted inequalities for the maximal operator with respect to the discrete diffusion semigroups associated with exceptional Jacobi and Jacobi-Dunkl polynomials are given. This setup allows to extend the corresponding results obtained for discrete heat semigroup recently to richer class of differential-difference operators.

Citation: Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002
References:
[1]

V. Almeida, J. J. Betancor and L. Rodríguez-Mesa, Discrete Hardy spaces and heat semigroup associated with the discrete Laplacian, Mediterr. J. Math., 16 (2019), 23pp. doi: 10.1007/s00009-019-1366-2.  Google Scholar

[2]

A. Arenas, Ó. Ciaurri and E. Labarga, Discrete harmonic analysis associated with Jacobi expansions I: The heat semigroup, J. Math. Anal. Appl., 490 (2020), 123996. doi: 10.1016/j.jmaa.2020.123996.  Google Scholar

[3]

F. Astengo and B. Di Blasio, Dynamics of the heat semigroup in Jacobi analysis, J. Math. Anal. Appl., 391 (2012), 48-56.  doi: 10.1016/j.jmaa.2012.02.033.  Google Scholar

[4]

J. J. BetancorA. J. CastroJ. C. Farina and L. Rodríguez-Mesa, Discrete harmonic analysis associated with ultraspherical expansions, Potential Anal., 53 (2020), 523-563.  doi: 10.1007/s11118-019-09777-9.  Google Scholar

[5]

F. Chouchene, Harmonic analysis associated with the Jacobi-Dunkl operator on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, J. Comput. Appl. Math., 178 (2005), 75-89.  doi: 10.1016/j.cam.2004.02.025.  Google Scholar

[6]

F. ChoucheneL. Gallardo and M. Mili, The heat semigroup for the Jacobi-Dunkl operator and the related Markov processes, Potential Anal., 25 (2006), 103-119.  doi: 10.1007/s11118-006-9012-6.  Google Scholar

[7]

F. Chouchene, Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials, Int. J. Open Problems Complex Anal., 6 (2014), 49-77.  doi: 10.12816/0006030.  Google Scholar

[8]

F. Chouchene and I. Haouala, De La Vallée Poussin Approximations and Jacobi-Dunkl Convolution Structures, Results Math., 75 (2020), b21pp. doi: 10.1007/s00025-020-1175-8.  Google Scholar

[9]

O. CiaurriT. A. GillespieL. RoncalJ. L. Torrea and J. L. Varona, Harmonic analysis associated with a discrete Laplacian, J. d'Analyse Math., 132 (2017), 109-131.  doi: 10.1007/s11854-017-0015-6.  Google Scholar

[10]

A. Durán, Corrigendum to the papers on Exceptional orthogonal polynomials, J. Approx. Theory 253 (2020), 105349. doi: 10.1016/j.jat.2019.105349.  Google Scholar

[11]

M. Á. García-FerreroD. Gómez-Ullate and R. Milson, A Bochner type classification theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl., 472 (2019), 584-626.  doi: 10.1016/j.jmaa.2018.11.042.  Google Scholar

[12]

D. Gómez-Ullate, Y. Grandati and R. Milson, Corrigendum on the proof of completeness for exceptional Hermite polynomials, J. Approx. Theory, 253 (2020), 105350. doi: 10.1016/j.jat.2019.105350.  Google Scholar

[13]

D. Gómez-UllateN. Kamran and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.  doi: 10.1016/j.jmaa.2009.05.052.  Google Scholar

[14]

D. Gómez-Ullate, F. Marcellán and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399 (2013, ) 480–495. doi: 10.1016/j.jmaa.2012.10.032.  Google Scholar

[15]

D. V. GorbachevV. I. Ivanov and S. Y. Tikhonov, Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., 49 (2019), 555-605.  doi: 10.1007/s00365-018-9435-5.  Google Scholar

[16]

Á. P. Horváth, Asymptotics for Recurrence Coefficients of $X_1$-Jacobi Exceptional Polynomials and Christoffel Function, Integr. Transf. Spec. F., 31 (2020), 87-106.  doi: 10.1080/10652469.2019.1672051.  Google Scholar

[17]

Á. P. Horváth, Multiplication operator and exceptional Jacobi polynomials, arXiv: 2003.11861. Google Scholar

[18]

P. Nevai, Géza Freud, Orthogonal Polynomials and Christoffel Functions, J. Approx Theory, 48 (1986), 3-167.  doi: 10.1016/0021-9045(86)90016-X.  Google Scholar

[19]

S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials : II, J Math Phys., 56 (2015), 053506. doi: 10.1063/1.4921230.  Google Scholar

[20]

E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb., 46 (1983), 105–l17.  Google Scholar

[21]

M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Springer, Berlin, 2003. doi: 10.1007/3-540-44945-0_3.  Google Scholar

[22] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, NJ, 1970.   Google Scholar
[23]

M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society, New York, 1932. doi: 10.1090/coll/015.  Google Scholar

[24]

G. Szegő, Orthogonal Polynomials, 4$^{th}$ edition, American Mathematical Society, Providence RI, 1975  Google Scholar

[25]

O. L. Vinogradov, On the norms of generalized translation operators generated by the Jacobi-Dunkl operators, J. of Math. Sci., 182 (2012), 603-616.  doi: 10.1007/s10958-012-0765-8.  Google Scholar

show all references

References:
[1]

V. Almeida, J. J. Betancor and L. Rodríguez-Mesa, Discrete Hardy spaces and heat semigroup associated with the discrete Laplacian, Mediterr. J. Math., 16 (2019), 23pp. doi: 10.1007/s00009-019-1366-2.  Google Scholar

[2]

A. Arenas, Ó. Ciaurri and E. Labarga, Discrete harmonic analysis associated with Jacobi expansions I: The heat semigroup, J. Math. Anal. Appl., 490 (2020), 123996. doi: 10.1016/j.jmaa.2020.123996.  Google Scholar

[3]

F. Astengo and B. Di Blasio, Dynamics of the heat semigroup in Jacobi analysis, J. Math. Anal. Appl., 391 (2012), 48-56.  doi: 10.1016/j.jmaa.2012.02.033.  Google Scholar

[4]

J. J. BetancorA. J. CastroJ. C. Farina and L. Rodríguez-Mesa, Discrete harmonic analysis associated with ultraspherical expansions, Potential Anal., 53 (2020), 523-563.  doi: 10.1007/s11118-019-09777-9.  Google Scholar

[5]

F. Chouchene, Harmonic analysis associated with the Jacobi-Dunkl operator on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, J. Comput. Appl. Math., 178 (2005), 75-89.  doi: 10.1016/j.cam.2004.02.025.  Google Scholar

[6]

F. ChoucheneL. Gallardo and M. Mili, The heat semigroup for the Jacobi-Dunkl operator and the related Markov processes, Potential Anal., 25 (2006), 103-119.  doi: 10.1007/s11118-006-9012-6.  Google Scholar

[7]

F. Chouchene, Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials, Int. J. Open Problems Complex Anal., 6 (2014), 49-77.  doi: 10.12816/0006030.  Google Scholar

[8]

F. Chouchene and I. Haouala, De La Vallée Poussin Approximations and Jacobi-Dunkl Convolution Structures, Results Math., 75 (2020), b21pp. doi: 10.1007/s00025-020-1175-8.  Google Scholar

[9]

O. CiaurriT. A. GillespieL. RoncalJ. L. Torrea and J. L. Varona, Harmonic analysis associated with a discrete Laplacian, J. d'Analyse Math., 132 (2017), 109-131.  doi: 10.1007/s11854-017-0015-6.  Google Scholar

[10]

A. Durán, Corrigendum to the papers on Exceptional orthogonal polynomials, J. Approx. Theory 253 (2020), 105349. doi: 10.1016/j.jat.2019.105349.  Google Scholar

[11]

M. Á. García-FerreroD. Gómez-Ullate and R. Milson, A Bochner type classification theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl., 472 (2019), 584-626.  doi: 10.1016/j.jmaa.2018.11.042.  Google Scholar

[12]

D. Gómez-Ullate, Y. Grandati and R. Milson, Corrigendum on the proof of completeness for exceptional Hermite polynomials, J. Approx. Theory, 253 (2020), 105350. doi: 10.1016/j.jat.2019.105350.  Google Scholar

[13]

D. Gómez-UllateN. Kamran and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.  doi: 10.1016/j.jmaa.2009.05.052.  Google Scholar

[14]

D. Gómez-Ullate, F. Marcellán and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399 (2013, ) 480–495. doi: 10.1016/j.jmaa.2012.10.032.  Google Scholar

[15]

D. V. GorbachevV. I. Ivanov and S. Y. Tikhonov, Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., 49 (2019), 555-605.  doi: 10.1007/s00365-018-9435-5.  Google Scholar

[16]

Á. P. Horváth, Asymptotics for Recurrence Coefficients of $X_1$-Jacobi Exceptional Polynomials and Christoffel Function, Integr. Transf. Spec. F., 31 (2020), 87-106.  doi: 10.1080/10652469.2019.1672051.  Google Scholar

[17]

Á. P. Horváth, Multiplication operator and exceptional Jacobi polynomials, arXiv: 2003.11861. Google Scholar

[18]

P. Nevai, Géza Freud, Orthogonal Polynomials and Christoffel Functions, J. Approx Theory, 48 (1986), 3-167.  doi: 10.1016/0021-9045(86)90016-X.  Google Scholar

[19]

S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials : II, J Math Phys., 56 (2015), 053506. doi: 10.1063/1.4921230.  Google Scholar

[20]

E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb., 46 (1983), 105–l17.  Google Scholar

[21]

M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Springer, Berlin, 2003. doi: 10.1007/3-540-44945-0_3.  Google Scholar

[22] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, NJ, 1970.   Google Scholar
[23]

M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society, New York, 1932. doi: 10.1090/coll/015.  Google Scholar

[24]

G. Szegő, Orthogonal Polynomials, 4$^{th}$ edition, American Mathematical Society, Providence RI, 1975  Google Scholar

[25]

O. L. Vinogradov, On the norms of generalized translation operators generated by the Jacobi-Dunkl operators, J. of Math. Sci., 182 (2012), 603-616.  doi: 10.1007/s10958-012-0765-8.  Google Scholar

[1]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[2]

Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021006

[3]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[4]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[5]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[6]

Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035

[7]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[8]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[9]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[10]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

[11]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[12]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[13]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062

[14]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[15]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[16]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[17]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[18]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[19]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

[20]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

2019 Impact Factor: 1.105

Article outline

[Back to Top]