-
Previous Article
Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model
- CPAA Home
- This Issue
-
Next Article
Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation
Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping
1. | Department of Mathematics, Shanghai University, Shanghai 200444, China |
2. | Materials Genome Institute, Shanghai University, Shanghai 200444, China |
This paper is concerned with the Cauchy problem of the 1-D unipolar hydrodynamic model for semiconductor device, a system of Euler-Poisson equations with time-dependent damping effect $ -J(1+t)^{-\lambda} $ for $ -1<\lambda<1 $, where $ J $ denotes the current density, and the damping effect is asymptotically vanishing as $ t \to \infty $ for $ \lambda>0 $, and asymptotically enhancing to infinity as $ t \to \infty $ for $ \lambda<0 $. When the initial perturbation around the constant states are sufficiently small, by means of the time-weighted energy method, we prove that the smooth solutions to the Cauchy problem exist uniquely and globally. Particularly, we also obtain the large-time behavior of the solutions.
References:
[1] |
K. Bløtekjær, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron. Devices, 17 (1970), 38-47. Google Scholar |
[2] |
S. G. Chen, H. Li, J. Li, M. Mei and K. Zhang,
Global and blow-up solutions to compressible Euler equations with time-dependent damping, J. Differ. Equ., 268 (2020), 5035-5077.
doi: 10.1016/j.jde.2019.11.002. |
[3] |
G. Q. Chen and D. Wang,
Convergence of shock schemes for the compressible Euler-Poisson equations, Commun. Math. Phys., 179 (1996), 333-364.
|
[4] |
P. Degond and P. A. Markowich,
On a one-dimensional steady-state hydrodynamic model, Appl. Math. Lett., 3 (1990), 25-29.
doi: 10.1016/0893-9659(90)90130-4. |
[5] |
P. Degond and P. A. Markowich,
A steady-state potential flow model for semiconductors, Ann. Math. Pure Appl., 4 (1993), 87-98.
doi: 10.1007/BF01765842. |
[6] |
D. Donatelli, M. Mei, B. Rubino and R. Sampalmieri, Asymptotic behavior of solutions to Euler-Poisson equations for bipolar hydrodynamic model of semiconductors, J. Differ. Equ., 255 (2013), 3150-3184.
doi: 10.1016/j.jde.2013.07.027. |
[7] |
W. F. Fang and K. Ito,
Steady-state solutions of a one-dimensional hydrodynamic model for semiconductors, J. Differ. Equ., 133 (1997), 224-244.
doi: 10.1006/jdeq.1996.3203. |
[8] |
I. M. Gamba,
Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor, Commun. Partial Differ. Equ., 17 (1992), 553-577.
doi: 10.1080/03605309208820853. |
[9] |
Y. Guo and W. Strauss,
Stability of semiconductor states with insulating and contact boundary conditions, Arch. Ration. Mech. Anal., 179 (2006), 1-30.
doi: 10.1007/s00205-005-0369-2. |
[10] |
I. Gasser, L. Hsiao and H. L. Li,
Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differ. Equ., 192 (2003), 326-359.
doi: 10.1016/S0022-0396(03)00122-0. |
[11] |
L. Hsiao, P. A. Markowich and S. Wang,
The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors, J. Differ. Equ., 192 (2003), 111-133.
doi: 10.1016/S0022-0396(03)00063-9. |
[12] |
L. Hsiao and T. Yang,
Asymptotic of Initial Boundary Value Problems for Hydrodynamic and Drift Diffusion Models for Semiconductors, J. Differ. Equ., 170 (2001), 473-493.
doi: 10.1006/jdeq.2000.3825. |
[13] |
L. Hsiao and K. J. Zhang,
The global weak solution and relaxation limits of the initialboundary value problem to the bipolar hydrodynamic model for semiconductors, Math. Models Meth. Appl. Sci., 10 (2000), 1333-1361.
doi: 10.1142/S0218202500000653. |
[14] |
L. Hsiao and K. J. Zhang,
The relaxation of the hydrodynamic model for semiconductors to drift diffusion equations, J. Differ. Equ., 165 (2000), 315-354.
doi: 10.1006/jdeq.2000.3780. |
[15] |
F. M. Huang, M. Mei, Y. Wang and H. M. Yu,
Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., 43 (2011), 411-429.
doi: 10.1137/100793025. |
[16] |
F. M. Huang, M. Mei and Y. Wang,
Large time behavior of solutions to n-dimensional bipolar hydrodynamic models for semiconductors, SIAM J. Math. Anal., 43 (2011), 1595-1630.
doi: 10.1137/100810228. |
[17] |
F. M. Huang, M. Mei, Y. Wang and T. Yang,
Long-time behavior of solutions for bipolar hydrodynamic model of semiconductors with boundary effects, SIAM J. Math. Anal., 44 (2012), 1134-1164.
doi: 10.1137/110831647. |
[18] |
F. M. Huang, M. Mei, Y. Wang and H. M. Yu,
Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors, J. Differ. Equ., 251 (2011), 1305-1331.
doi: 10.1016/j.jde.2011.04.007. |
[19] |
H. L. Li, P. Markowich and M. Mei,
Asymptotic behavior of solutions of the hydrodynamic model of semiconductors, Proc. Royal Soc. Edinburgh Sect. A, 132 (2002), 359-378.
doi: 10.1017/S0308210500001670. |
[20] |
H. L. Li, P. Markowich and M. Mei,
Asymptotic behavior of subsonic shock solutions of the isentropic Euler-Poisson equations, Quart. Appl. Math., 60 (2002), 773-796.
doi: 10.1090/qam/1939010. |
[21] |
H. T. Li, Large Time Behavior of Solutions to Hyperbolic Equations with Time-Dependent Damping (in Chinese), Ph.D thesis, Northeast Normal University, 2019. Google Scholar |
[22] |
H. T. Li, J. Y. Li, M. Mei and K. J. Zhang,
Asymptotic behavior of solutions to bipolar Euler-Poisson equations with time-dependent damping, J. Math. Anal. Appl., 437 (2019), 1081-1121.
doi: 10.1016/j.jmaa.2019.01.010. |
[23] |
T. Luo, R. Natalini and Z. Xin,
Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1998), 810-830.
doi: 10.1137/S0036139996312168. |
[24] |
L. P. Luan, M. Mei, B. Rubino and P. C. Zhu, Large-Time Behavior of Solutions to Cauchy Problem for Bipolar Euler-Poisson System with Time-Dependent Damping in Critical Case, preprint, 2020. |
[25] |
P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-7091-6961-2. |
[26] |
A. Matsumura,
Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equation with the first-order dissipation, Publ. RIMS Kyoto Univ., 13 (1977), 349-379.
doi: 10.2977/prims/1195189813. |
[27] |
P. Marcati and R. Natalini,
Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rat. Mech. Anal., 129 (1995), 129-145.
doi: 10.1007/BF00379918. |
[28] |
S. Nishibata and M. Suzuki,
Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors, Arch. Ration. Mech. Anal., 192 (2009), 187-215.
doi: 10.1007/s00205-008-0129-1. |
[29] |
X. H. Pan,
Global existence of solutions to 1-d Euler equations with time-dependent damping, Nonlinear Anal., 132 (2016), 327-336.
doi: 10.1016/j.na.2015.11.022. |
[30] |
X. H. Pan,
Blow up of solutions to 1-d Euler equations with time-dependent damping, J. Math. Anal. Appl., 442 (2016), 435-445.
doi: 10.1016/j.jmaa.2016.04.075. |
[31] |
F. Poupaud, M. Rascle and J. P. Vila,
Global solutions to the isothermal Euler-Poisson system with arbitrarily large data, J. Differ. Equ., 123 (1995), 93-121.
doi: 10.1006/jdeq.1995.1158. |
[32] |
A. Sitenko and V. Malnev, Plasma physics theory, Appl. Math. Math. Comput., 10, Chapman & Hall, Lonndon, 1995. |
[33] |
Y. Sugiyama,
Singularity formation for the 1-D compressible Euler equations with variable damping coefficient, Nonlinear Anal., 170 (2018), 70-87.
doi: 10.1016/j.na.2017.12.013. |
[34] |
H. Sun, M. Mei and K. J. Zhang, Large time behaviors of solutions to the unipolar hydrodynamic model of semiconductors with physical boundary effect, Nonlinear Anal.-Real, 53 (2020), 103070.
doi: 10.1016/j.nonrwa.2019.103070. |
[35] |
B. Zhang,
Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices, Commun. Math. Phys., 157 (1993), 1-22.
|
show all references
References:
[1] |
K. Bløtekjær, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron. Devices, 17 (1970), 38-47. Google Scholar |
[2] |
S. G. Chen, H. Li, J. Li, M. Mei and K. Zhang,
Global and blow-up solutions to compressible Euler equations with time-dependent damping, J. Differ. Equ., 268 (2020), 5035-5077.
doi: 10.1016/j.jde.2019.11.002. |
[3] |
G. Q. Chen and D. Wang,
Convergence of shock schemes for the compressible Euler-Poisson equations, Commun. Math. Phys., 179 (1996), 333-364.
|
[4] |
P. Degond and P. A. Markowich,
On a one-dimensional steady-state hydrodynamic model, Appl. Math. Lett., 3 (1990), 25-29.
doi: 10.1016/0893-9659(90)90130-4. |
[5] |
P. Degond and P. A. Markowich,
A steady-state potential flow model for semiconductors, Ann. Math. Pure Appl., 4 (1993), 87-98.
doi: 10.1007/BF01765842. |
[6] |
D. Donatelli, M. Mei, B. Rubino and R. Sampalmieri, Asymptotic behavior of solutions to Euler-Poisson equations for bipolar hydrodynamic model of semiconductors, J. Differ. Equ., 255 (2013), 3150-3184.
doi: 10.1016/j.jde.2013.07.027. |
[7] |
W. F. Fang and K. Ito,
Steady-state solutions of a one-dimensional hydrodynamic model for semiconductors, J. Differ. Equ., 133 (1997), 224-244.
doi: 10.1006/jdeq.1996.3203. |
[8] |
I. M. Gamba,
Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor, Commun. Partial Differ. Equ., 17 (1992), 553-577.
doi: 10.1080/03605309208820853. |
[9] |
Y. Guo and W. Strauss,
Stability of semiconductor states with insulating and contact boundary conditions, Arch. Ration. Mech. Anal., 179 (2006), 1-30.
doi: 10.1007/s00205-005-0369-2. |
[10] |
I. Gasser, L. Hsiao and H. L. Li,
Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differ. Equ., 192 (2003), 326-359.
doi: 10.1016/S0022-0396(03)00122-0. |
[11] |
L. Hsiao, P. A. Markowich and S. Wang,
The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors, J. Differ. Equ., 192 (2003), 111-133.
doi: 10.1016/S0022-0396(03)00063-9. |
[12] |
L. Hsiao and T. Yang,
Asymptotic of Initial Boundary Value Problems for Hydrodynamic and Drift Diffusion Models for Semiconductors, J. Differ. Equ., 170 (2001), 473-493.
doi: 10.1006/jdeq.2000.3825. |
[13] |
L. Hsiao and K. J. Zhang,
The global weak solution and relaxation limits of the initialboundary value problem to the bipolar hydrodynamic model for semiconductors, Math. Models Meth. Appl. Sci., 10 (2000), 1333-1361.
doi: 10.1142/S0218202500000653. |
[14] |
L. Hsiao and K. J. Zhang,
The relaxation of the hydrodynamic model for semiconductors to drift diffusion equations, J. Differ. Equ., 165 (2000), 315-354.
doi: 10.1006/jdeq.2000.3780. |
[15] |
F. M. Huang, M. Mei, Y. Wang and H. M. Yu,
Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., 43 (2011), 411-429.
doi: 10.1137/100793025. |
[16] |
F. M. Huang, M. Mei and Y. Wang,
Large time behavior of solutions to n-dimensional bipolar hydrodynamic models for semiconductors, SIAM J. Math. Anal., 43 (2011), 1595-1630.
doi: 10.1137/100810228. |
[17] |
F. M. Huang, M. Mei, Y. Wang and T. Yang,
Long-time behavior of solutions for bipolar hydrodynamic model of semiconductors with boundary effects, SIAM J. Math. Anal., 44 (2012), 1134-1164.
doi: 10.1137/110831647. |
[18] |
F. M. Huang, M. Mei, Y. Wang and H. M. Yu,
Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors, J. Differ. Equ., 251 (2011), 1305-1331.
doi: 10.1016/j.jde.2011.04.007. |
[19] |
H. L. Li, P. Markowich and M. Mei,
Asymptotic behavior of solutions of the hydrodynamic model of semiconductors, Proc. Royal Soc. Edinburgh Sect. A, 132 (2002), 359-378.
doi: 10.1017/S0308210500001670. |
[20] |
H. L. Li, P. Markowich and M. Mei,
Asymptotic behavior of subsonic shock solutions of the isentropic Euler-Poisson equations, Quart. Appl. Math., 60 (2002), 773-796.
doi: 10.1090/qam/1939010. |
[21] |
H. T. Li, Large Time Behavior of Solutions to Hyperbolic Equations with Time-Dependent Damping (in Chinese), Ph.D thesis, Northeast Normal University, 2019. Google Scholar |
[22] |
H. T. Li, J. Y. Li, M. Mei and K. J. Zhang,
Asymptotic behavior of solutions to bipolar Euler-Poisson equations with time-dependent damping, J. Math. Anal. Appl., 437 (2019), 1081-1121.
doi: 10.1016/j.jmaa.2019.01.010. |
[23] |
T. Luo, R. Natalini and Z. Xin,
Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1998), 810-830.
doi: 10.1137/S0036139996312168. |
[24] |
L. P. Luan, M. Mei, B. Rubino and P. C. Zhu, Large-Time Behavior of Solutions to Cauchy Problem for Bipolar Euler-Poisson System with Time-Dependent Damping in Critical Case, preprint, 2020. |
[25] |
P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-7091-6961-2. |
[26] |
A. Matsumura,
Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equation with the first-order dissipation, Publ. RIMS Kyoto Univ., 13 (1977), 349-379.
doi: 10.2977/prims/1195189813. |
[27] |
P. Marcati and R. Natalini,
Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rat. Mech. Anal., 129 (1995), 129-145.
doi: 10.1007/BF00379918. |
[28] |
S. Nishibata and M. Suzuki,
Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors, Arch. Ration. Mech. Anal., 192 (2009), 187-215.
doi: 10.1007/s00205-008-0129-1. |
[29] |
X. H. Pan,
Global existence of solutions to 1-d Euler equations with time-dependent damping, Nonlinear Anal., 132 (2016), 327-336.
doi: 10.1016/j.na.2015.11.022. |
[30] |
X. H. Pan,
Blow up of solutions to 1-d Euler equations with time-dependent damping, J. Math. Anal. Appl., 442 (2016), 435-445.
doi: 10.1016/j.jmaa.2016.04.075. |
[31] |
F. Poupaud, M. Rascle and J. P. Vila,
Global solutions to the isothermal Euler-Poisson system with arbitrarily large data, J. Differ. Equ., 123 (1995), 93-121.
doi: 10.1006/jdeq.1995.1158. |
[32] |
A. Sitenko and V. Malnev, Plasma physics theory, Appl. Math. Math. Comput., 10, Chapman & Hall, Lonndon, 1995. |
[33] |
Y. Sugiyama,
Singularity formation for the 1-D compressible Euler equations with variable damping coefficient, Nonlinear Anal., 170 (2018), 70-87.
doi: 10.1016/j.na.2017.12.013. |
[34] |
H. Sun, M. Mei and K. J. Zhang, Large time behaviors of solutions to the unipolar hydrodynamic model of semiconductors with physical boundary effect, Nonlinear Anal.-Real, 53 (2020), 103070.
doi: 10.1016/j.nonrwa.2019.103070. |
[35] |
B. Zhang,
Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices, Commun. Math. Phys., 157 (1993), 1-22.
|
[1] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[2] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[3] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[4] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[5] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[6] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[7] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[8] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[9] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[10] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[11] |
Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107 |
[12] |
Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021010 |
[13] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[14] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[15] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[16] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[17] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[18] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
[19] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[20] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]