doi: 10.3934/cpaa.2021004

An overdetermined problem associated to the Finsler Laplacian

1. 

Department of Mathematics "Federigo Enriques", Università degli Studi di Milano, Italy

2. 

Department of Mathematics and Computer Science, Università degli Studi di Cagliari, Italy

* Corresponding author

Received  October 2020 Revised  November 2020 Published  January 2021

Fund Project: G. Ciraolo has been partially supported by the PRIN 2017 project "Qualitative and quantitative aspects of nonlinear PDEs" and by GNAMPA of INdAM. A. Greco has been partially supported by the research project Integro-differential Equations and Non-Local Problems, funded by Fondazione di Sardegna (2017)

We prove a rigidity result for the anisotropic Laplacian. More precisely, the domain of the problem is bounded by an unknown surface supporting a Dirichlet condition together with a Neumann-type condition which is not translation-invariant. Using a comparison argument, we show that the domain is in fact a Wulff shape. We also consider the more general case when the unknown surface is required to have its boundary on a given conical surface: in such a case, the domain of the problem is bounded by the unknown surface and by a portion of the given conical surface, which supports a homogeneous Neumann condition. We prove that the unknown surface lies on the boundary of a Wulff shape.

Citation: Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021004
References:
[1]

C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Partial Differ. Equ., 43 (2018), 790-820.  doi: 10.1080/03605302.2018.1475488.  Google Scholar

[2]

C. Bianchini, G. Ciraolo and P. Salani, An overdetermined problem for the anisotropic capacity, Calc. Var., 55, 84 (2016). doi: 10.1007/s00526-016-1011-x.  Google Scholar

[3]

G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.  doi: 10.14492/hokmj/1351516749.  Google Scholar

[4]

P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control., Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser, 2004.  Google Scholar

[5]

A. Cianchi and P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.  doi: 10.1007/s00208-009-0386-9.  Google Scholar

[6]

G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic $p$-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770-803. doi: 10.1007/s00039-020-00535-3.  Google Scholar

[7]

G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, Calc. Var. Partial Differ. Equ., 59, 28 (2020). doi: 10.1007/s00526-019-1678-x.  Google Scholar

[8]

A. Farina and B. Kawohl, Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ., 31 (2008), 351-357.  doi: 10.1007/s00526-007-0115-8.  Google Scholar

[9]

A. Farina and E. Valdinoci, On partially and globally overdetermined problems of elliptic type, Amer. J. Math., 135 (2013), 1699-1726.  doi: 10.1353/ajm.2013.0052.  Google Scholar

[10]

E. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.  doi: 10.1090/S0002-9939-08-09554-3.  Google Scholar

[11]

I. Fragalà and F. Gazzola, Partially overdetermined elliptic boundary value problems, J. Differ. Equ., 245 (2008), 1299-1322.  doi: 10.1016/j.jde.2008.06.014.  Google Scholar

[12]

I. FragalàF. GazzolaJ. Lamboley and M. Pierre, Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis, 29 (2009), 85-93.  doi: 10.1524/anly.2009.1016.  Google Scholar

[13]

N. Garofalo and J. L. Lewis, A symmetry result related to some overdetermined boundary value problems, Amer. J. Math., 111 (1989), 9-33.  doi: 10.2307/2374477.  Google Scholar

[14]

A. Greco, Comparison principle and constrained radial symmetry for the subdiffusive $p$-Laplacian, Publ. Mat., 58 (2014), 485-498.  doi: 10.5565/PUBLMAT_58214_24.  Google Scholar

[15]

A. Greco, Symmetry around the origin for some overdetermined problems, Adv. Math. Sci. Appl., 13 (2003), 387-399.   Google Scholar

[16]

P. L. Lions and F. Pacella, Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc., 109 (1990), 477-485.  doi: 10.2307/2048011.  Google Scholar

[17]

F. Pacella and G. Tralli, Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam., 36 (2020), 841-867.  doi: 10.4171/rmi/1151.  Google Scholar

[18]

A. Roncoroni, A symmetry result for the $\varphi$-Laplacian in model manifolds, preprint. Google Scholar

[19]

S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd ed, Springer International Publishing, 2016. doi: 10.1007/978-3-319-31238-5.  Google Scholar

[20]

R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, in Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1993. doi: 10.1017/CBO9780511526282.  Google Scholar

[21]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.  Google Scholar

[22]

G. Wang and C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.  doi: 10.1007/s00205-010-0323-9.  Google Scholar

show all references

References:
[1]

C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Partial Differ. Equ., 43 (2018), 790-820.  doi: 10.1080/03605302.2018.1475488.  Google Scholar

[2]

C. Bianchini, G. Ciraolo and P. Salani, An overdetermined problem for the anisotropic capacity, Calc. Var., 55, 84 (2016). doi: 10.1007/s00526-016-1011-x.  Google Scholar

[3]

G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.  doi: 10.14492/hokmj/1351516749.  Google Scholar

[4]

P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control., Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser, 2004.  Google Scholar

[5]

A. Cianchi and P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.  doi: 10.1007/s00208-009-0386-9.  Google Scholar

[6]

G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic $p$-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770-803. doi: 10.1007/s00039-020-00535-3.  Google Scholar

[7]

G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, Calc. Var. Partial Differ. Equ., 59, 28 (2020). doi: 10.1007/s00526-019-1678-x.  Google Scholar

[8]

A. Farina and B. Kawohl, Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ., 31 (2008), 351-357.  doi: 10.1007/s00526-007-0115-8.  Google Scholar

[9]

A. Farina and E. Valdinoci, On partially and globally overdetermined problems of elliptic type, Amer. J. Math., 135 (2013), 1699-1726.  doi: 10.1353/ajm.2013.0052.  Google Scholar

[10]

E. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.  doi: 10.1090/S0002-9939-08-09554-3.  Google Scholar

[11]

I. Fragalà and F. Gazzola, Partially overdetermined elliptic boundary value problems, J. Differ. Equ., 245 (2008), 1299-1322.  doi: 10.1016/j.jde.2008.06.014.  Google Scholar

[12]

I. FragalàF. GazzolaJ. Lamboley and M. Pierre, Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis, 29 (2009), 85-93.  doi: 10.1524/anly.2009.1016.  Google Scholar

[13]

N. Garofalo and J. L. Lewis, A symmetry result related to some overdetermined boundary value problems, Amer. J. Math., 111 (1989), 9-33.  doi: 10.2307/2374477.  Google Scholar

[14]

A. Greco, Comparison principle and constrained radial symmetry for the subdiffusive $p$-Laplacian, Publ. Mat., 58 (2014), 485-498.  doi: 10.5565/PUBLMAT_58214_24.  Google Scholar

[15]

A. Greco, Symmetry around the origin for some overdetermined problems, Adv. Math. Sci. Appl., 13 (2003), 387-399.   Google Scholar

[16]

P. L. Lions and F. Pacella, Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc., 109 (1990), 477-485.  doi: 10.2307/2048011.  Google Scholar

[17]

F. Pacella and G. Tralli, Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam., 36 (2020), 841-867.  doi: 10.4171/rmi/1151.  Google Scholar

[18]

A. Roncoroni, A symmetry result for the $\varphi$-Laplacian in model manifolds, preprint. Google Scholar

[19]

S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd ed, Springer International Publishing, 2016. doi: 10.1007/978-3-319-31238-5.  Google Scholar

[20]

R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, in Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1993. doi: 10.1017/CBO9780511526282.  Google Scholar

[21]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.  Google Scholar

[22]

G. Wang and C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.  doi: 10.1007/s00205-010-0323-9.  Google Scholar

Figure 1.  Maximizing the scalar product $ y \cdot {D \! H}_0(x) $ under the constraint $ H_0(y) = R $
Figure 2.  The ball $ B_1(0, H_0) $ (left) is smooth, its dual (right) is not
Figure 3.  Finding the Euclidean norm of $ {D \! H}_0(P_\vartheta) $
[1]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[2]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[3]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[4]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[5]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[6]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[7]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[9]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[10]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[13]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[14]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[15]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[16]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[17]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[18]

Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056

[19]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[20]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

2019 Impact Factor: 1.105

Article outline

Figures and Tables

[Back to Top]