
- Previous Article
- CPAA Home
- This Issue
-
Next Article
Inequalities of Hermite-Hadamard type for higher order convex functions, revisited
An overdetermined problem associated to the Finsler Laplacian
1. | Department of Mathematics "Federigo Enriques", Università degli Studi di Milano, Italy |
2. | Department of Mathematics and Computer Science, Università degli Studi di Cagliari, Italy |
We prove a rigidity result for the anisotropic Laplacian. More precisely, the domain of the problem is bounded by an unknown surface supporting a Dirichlet condition together with a Neumann-type condition which is not translation-invariant. Using a comparison argument, we show that the domain is in fact a Wulff shape. We also consider the more general case when the unknown surface is required to have its boundary on a given conical surface: in such a case, the domain of the problem is bounded by the unknown surface and by a portion of the given conical surface, which supports a homogeneous Neumann condition. We prove that the unknown surface lies on the boundary of a Wulff shape.
References:
[1] |
C. Bianchini and G. Ciraolo,
Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Partial Differ. Equ., 43 (2018), 790-820.
doi: 10.1080/03605302.2018.1475488. |
[2] |
C. Bianchini, G. Ciraolo and P. Salani, An overdetermined problem for the anisotropic capacity, Calc. Var., 55, 84 (2016).
doi: 10.1007/s00526-016-1011-x. |
[3] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[4] |
P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control., Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser, 2004. |
[5] |
A. Cianchi and P. Salani,
Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.
doi: 10.1007/s00208-009-0386-9. |
[6] |
G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic $p$-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770-803.
doi: 10.1007/s00039-020-00535-3. |
[7] |
G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, Calc. Var. Partial Differ. Equ., 59, 28 (2020).
doi: 10.1007/s00526-019-1678-x. |
[8] |
A. Farina and B. Kawohl,
Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ., 31 (2008), 351-357.
doi: 10.1007/s00526-007-0115-8. |
[9] |
A. Farina and E. Valdinoci,
On partially and globally overdetermined problems of elliptic type, Amer. J. Math., 135 (2013), 1699-1726.
doi: 10.1353/ajm.2013.0052. |
[10] |
E. Ferone and B. Kawohl,
Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.
doi: 10.1090/S0002-9939-08-09554-3. |
[11] |
I. Fragalà and F. Gazzola,
Partially overdetermined elliptic boundary value problems, J. Differ. Equ., 245 (2008), 1299-1322.
doi: 10.1016/j.jde.2008.06.014. |
[12] |
I. Fragalà, F. Gazzola, J. Lamboley and M. Pierre,
Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis, 29 (2009), 85-93.
doi: 10.1524/anly.2009.1016. |
[13] |
N. Garofalo and J. L. Lewis,
A symmetry result related to some overdetermined boundary value problems, Amer. J. Math., 111 (1989), 9-33.
doi: 10.2307/2374477. |
[14] |
A. Greco,
Comparison principle and constrained radial symmetry for the subdiffusive $p$-Laplacian, Publ. Mat., 58 (2014), 485-498.
doi: 10.5565/PUBLMAT_58214_24. |
[15] |
A. Greco,
Symmetry around the origin for some overdetermined problems, Adv. Math. Sci. Appl., 13 (2003), 387-399.
|
[16] |
P. L. Lions and F. Pacella,
Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc., 109 (1990), 477-485.
doi: 10.2307/2048011. |
[17] |
F. Pacella and G. Tralli,
Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam., 36 (2020), 841-867.
doi: 10.4171/rmi/1151. |
[18] |
A. Roncoroni, A symmetry result for the $\varphi$-Laplacian in model manifolds, preprint. Google Scholar |
[19] |
S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd ed, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-31238-5. |
[20] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, in Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 1993.
doi: 10.1017/CBO9780511526282. |
[21] |
J. Serrin,
A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468. |
[22] |
G. Wang and C. Xia,
A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.
doi: 10.1007/s00205-010-0323-9. |
show all references
References:
[1] |
C. Bianchini and G. Ciraolo,
Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Partial Differ. Equ., 43 (2018), 790-820.
doi: 10.1080/03605302.2018.1475488. |
[2] |
C. Bianchini, G. Ciraolo and P. Salani, An overdetermined problem for the anisotropic capacity, Calc. Var., 55, 84 (2016).
doi: 10.1007/s00526-016-1011-x. |
[3] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[4] |
P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control., Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser, 2004. |
[5] |
A. Cianchi and P. Salani,
Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.
doi: 10.1007/s00208-009-0386-9. |
[6] |
G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic $p$-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770-803.
doi: 10.1007/s00039-020-00535-3. |
[7] |
G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, Calc. Var. Partial Differ. Equ., 59, 28 (2020).
doi: 10.1007/s00526-019-1678-x. |
[8] |
A. Farina and B. Kawohl,
Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ., 31 (2008), 351-357.
doi: 10.1007/s00526-007-0115-8. |
[9] |
A. Farina and E. Valdinoci,
On partially and globally overdetermined problems of elliptic type, Amer. J. Math., 135 (2013), 1699-1726.
doi: 10.1353/ajm.2013.0052. |
[10] |
E. Ferone and B. Kawohl,
Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.
doi: 10.1090/S0002-9939-08-09554-3. |
[11] |
I. Fragalà and F. Gazzola,
Partially overdetermined elliptic boundary value problems, J. Differ. Equ., 245 (2008), 1299-1322.
doi: 10.1016/j.jde.2008.06.014. |
[12] |
I. Fragalà, F. Gazzola, J. Lamboley and M. Pierre,
Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis, 29 (2009), 85-93.
doi: 10.1524/anly.2009.1016. |
[13] |
N. Garofalo and J. L. Lewis,
A symmetry result related to some overdetermined boundary value problems, Amer. J. Math., 111 (1989), 9-33.
doi: 10.2307/2374477. |
[14] |
A. Greco,
Comparison principle and constrained radial symmetry for the subdiffusive $p$-Laplacian, Publ. Mat., 58 (2014), 485-498.
doi: 10.5565/PUBLMAT_58214_24. |
[15] |
A. Greco,
Symmetry around the origin for some overdetermined problems, Adv. Math. Sci. Appl., 13 (2003), 387-399.
|
[16] |
P. L. Lions and F. Pacella,
Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc., 109 (1990), 477-485.
doi: 10.2307/2048011. |
[17] |
F. Pacella and G. Tralli,
Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam., 36 (2020), 841-867.
doi: 10.4171/rmi/1151. |
[18] |
A. Roncoroni, A symmetry result for the $\varphi$-Laplacian in model manifolds, preprint. Google Scholar |
[19] |
S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd ed, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-31238-5. |
[20] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, in Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 1993.
doi: 10.1017/CBO9780511526282. |
[21] |
J. Serrin,
A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468. |
[22] |
G. Wang and C. Xia,
A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.
doi: 10.1007/s00205-010-0323-9. |



[1] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285 |
[2] |
Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227 |
[3] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[4] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[5] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[6] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[7] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021002 |
[8] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[9] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[10] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[11] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[12] |
Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020173 |
[13] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[14] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[15] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[16] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[17] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020167 |
[18] |
Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056 |
[19] |
Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 |
[20] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
2019 Impact Factor: 1.105
Tools
Article outline
Figures and Tables
[Back to Top]