-
Previous Article
Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration
- CPAA Home
- This Issue
-
Next Article
Global solutions of a two-dimensional Riemann problem for the pressure gradient system
Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation
IRMA UMR 7501, Université de Strasbourg, CNRS, F-67000 Strasbourg, France |
We consider the Zakharov-Kuznetsov equation (ZK) in space dimension 2. Solutions $ u $ with initial data $ u_0 \in H^s $ are known to be global if $ s \ge 1 $. We prove that for any integer $ s \ge 2 $, $ \| u(t) \|_{H^s} $ grows at most polynomially in $ t $ for large times $ t $. This result is related to wave turbulence and how a solution of (ZK) can move energy to high frequencies.
It is inspired by analoguous results by Staffilani [
References:
[1] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.
doi: 10.1007/BF01896020. |
[2] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[3] |
A. Carbery, C. E. Kenig and S. N. Ziesler,
Restriction for homogeneous polynomial surfaces in $\mathbb{R}^3$, T. Am. Math. Soc., 5 (2013), 2367-2407.
doi: 10.1090/S0002-9947-2012-05685-6. |
[4] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.
doi: 10.1137/S0036141001384387. |
[5] |
A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation, Differentsial~ nye Uravneniya, 31 (1995), 1070-1081. |
[6] |
J. Ginibre, Le probléme de Cauchy pour des edp semi-linéaires périodiques en variables d'espace, Séminaire Bourbaki, 796 (1995), 163-187. |
[7] |
A. Grünrock and S. Herr,
The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 34 (2014), 2061-2068.
doi: 10.3934/dcds.2014.34.2061. |
[8] |
D. Han-Kwan,
From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Commun. Math. Phys., 324 (2013), 961-993.
doi: 10.1007/s00220-013-1825-8. |
[9] |
Z. Hani, B. Pausader, N. Tzvetkov and N. Visciglia,
Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum Math. Pi, 3 (2015), 1-63.
doi: 10.1017/fmp.2015.5. |
[10] |
J. Pedro Isaza, L. Jorge Mejía and N. Tzvetkov,
A smoothing effect and polynomial growth of the Sobolev norms for the KP-II equation, J. Differ. Equ., 220 (2006), 1-17.
doi: 10.1016/j.jde.2004.10.002. |
[11] |
J. Pedro Isaza and L. Jorge Mejía,
Global solution for the Kadomtsev-Petviashvili equation (KPII) in anisotropic Sobolev spaces of negative indices, Electron. J. Differ. Equ., 68 (2003), 1-12.
|
[12] |
C. E. Kenig, G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Am. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[13] |
S. Kinoshita, Global Well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D, arXiv: 1911.13265.
doi: 10.3934/dcds.2018061. |
[14] |
D. Lannes, F. Linares and J. C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, in Studies in phase space analysis with applications to PDEs, Birkhäuser/Springer, New York, 2013.
doi: 10.1007/978-1-4614-6348-1_10. |
[15] |
F. Linares and A. Pastor,
Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339.
doi: 10.1137/080739173. |
[16] |
F. Linares and A. Pastor,
Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., 4 (2011), 1060-1085.
doi: 10.1016/j.jfa.2010.11.005. |
[17] |
F. Linares and J. C. Saut,
The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[18] |
L. Molinet and D. Pilod,
Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347-371.
doi: 10.1016/j.anihpc.2013.12.003. |
[19] |
F. Planchon, N. Tzvetkov and N. Visciglia,
On the growth of Sobolev norms for NLS on 2- and 3-dimensional manifolds, Anal. PDE, 10 (2017), 1123-1147.
doi: 10.2140/apde.2017.10.1123. |
[20] |
V. Sohinger,
Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on $\mathbb R$, Indiana Univ. Math. J., 60 (2011), 1487-1516.
doi: 10.1512/iumj.2011.60.4399. |
[21] |
G. Staffilani,
On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J., 86 (1997), 109-142.
doi: 10.1215/S0012-7094-97-08604-X. |
[22] |
V. E. Zakharov and E. A. Kuznetsov, On three dimensional solitons, Zhurnal Eksp. Teoret. Fiz, 66 (1974), 594-597. Google Scholar |
show all references
References:
[1] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.
doi: 10.1007/BF01896020. |
[2] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[3] |
A. Carbery, C. E. Kenig and S. N. Ziesler,
Restriction for homogeneous polynomial surfaces in $\mathbb{R}^3$, T. Am. Math. Soc., 5 (2013), 2367-2407.
doi: 10.1090/S0002-9947-2012-05685-6. |
[4] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.
doi: 10.1137/S0036141001384387. |
[5] |
A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation, Differentsial~ nye Uravneniya, 31 (1995), 1070-1081. |
[6] |
J. Ginibre, Le probléme de Cauchy pour des edp semi-linéaires périodiques en variables d'espace, Séminaire Bourbaki, 796 (1995), 163-187. |
[7] |
A. Grünrock and S. Herr,
The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 34 (2014), 2061-2068.
doi: 10.3934/dcds.2014.34.2061. |
[8] |
D. Han-Kwan,
From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Commun. Math. Phys., 324 (2013), 961-993.
doi: 10.1007/s00220-013-1825-8. |
[9] |
Z. Hani, B. Pausader, N. Tzvetkov and N. Visciglia,
Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum Math. Pi, 3 (2015), 1-63.
doi: 10.1017/fmp.2015.5. |
[10] |
J. Pedro Isaza, L. Jorge Mejía and N. Tzvetkov,
A smoothing effect and polynomial growth of the Sobolev norms for the KP-II equation, J. Differ. Equ., 220 (2006), 1-17.
doi: 10.1016/j.jde.2004.10.002. |
[11] |
J. Pedro Isaza and L. Jorge Mejía,
Global solution for the Kadomtsev-Petviashvili equation (KPII) in anisotropic Sobolev spaces of negative indices, Electron. J. Differ. Equ., 68 (2003), 1-12.
|
[12] |
C. E. Kenig, G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Am. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[13] |
S. Kinoshita, Global Well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D, arXiv: 1911.13265.
doi: 10.3934/dcds.2018061. |
[14] |
D. Lannes, F. Linares and J. C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, in Studies in phase space analysis with applications to PDEs, Birkhäuser/Springer, New York, 2013.
doi: 10.1007/978-1-4614-6348-1_10. |
[15] |
F. Linares and A. Pastor,
Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339.
doi: 10.1137/080739173. |
[16] |
F. Linares and A. Pastor,
Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., 4 (2011), 1060-1085.
doi: 10.1016/j.jfa.2010.11.005. |
[17] |
F. Linares and J. C. Saut,
The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[18] |
L. Molinet and D. Pilod,
Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347-371.
doi: 10.1016/j.anihpc.2013.12.003. |
[19] |
F. Planchon, N. Tzvetkov and N. Visciglia,
On the growth of Sobolev norms for NLS on 2- and 3-dimensional manifolds, Anal. PDE, 10 (2017), 1123-1147.
doi: 10.2140/apde.2017.10.1123. |
[20] |
V. Sohinger,
Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations on $\mathbb R$, Indiana Univ. Math. J., 60 (2011), 1487-1516.
doi: 10.1512/iumj.2011.60.4399. |
[21] |
G. Staffilani,
On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J., 86 (1997), 109-142.
doi: 10.1215/S0012-7094-97-08604-X. |
[22] |
V. E. Zakharov and E. A. Kuznetsov, On three dimensional solitons, Zhurnal Eksp. Teoret. Fiz, 66 (1974), 594-597. Google Scholar |
[1] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[2] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[3] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[4] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[5] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[6] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[7] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[8] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[9] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[10] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[11] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[12] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[13] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[14] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[15] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[16] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[17] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[18] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[19] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]