doi: 10.3934/cpaa.2021006

Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $

1. 

College of Science, Henan University of Technology, Zhengzhou, 450001, China

2. 

School of Mathematics and Statistics, Zhengzhou University, No.100, Science Road, Zhengzhou, 450001, China

* Corresponding author

Received  May 2020 Revised  November 2020 Published  January 2021

Fund Project: The research is supported by National Natural Science Foundation of China (Grant No. 11671367) and the Doctor Foundation of Henan University of Technology, China (No. 2019BS041). The first author is supported by the Doctor Foundation of Henan University of Technology, China (Grant No. 2019BS041). The second author is supported by NSFC (Grant No. 11671367)

The paper investigates the well-posedness and the existence of global attractor for a strongly damped wave equation on $ \mathbb{R}^{N} (N\geqslant 3): u_{tt}-\Delta u_{t}-\Delta u+u_{t}+u+g(u) = f(x) $. It shows that when the nonlinearity $ g(u) $ is of supercritical growth $ p $, with $ \frac{N+2}{N-2}\equiv p^*< p< p^{**} \equiv\frac{N+4}{(N-4)^+} $, (i) the initial value problem of the equation is well-posed and its weak solution possesses additionally partial regularity as $ t>0 $; (ii) the related solution semigroup has a global attractor in natural energy space. By using a new double truncation method on frequency space $ \mathbb{R}^N $ rather than approximating physical space $ \mathbb{R}^N $ by a sequence of balls $ \Omega_R $ as usual, we break through the longstanding existed restriction on this topic for $ p: 1\leqslant p\leqslant p^* $.

Citation: Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021006
References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differ. Equ., 83 (1990), 85-108.  doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, P. Roy. Soc. Edinb. A, 116 (1990), 221-243.  doi: 10.1017/S0308210500031498.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discret. Contin. Dyn. S., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $\mathbb{R}^3$, Discret. Contin. Dyn. S., 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[5]

J. Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase space analysis of partial differential equations, Centro, Edizioni, Scunla Normale superiore, 2004.  Google Scholar

[6]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differ. Equ., 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[8]

M. ContiV. Pata and M. Squassina, Strongly damped wave equations on $\mathbb{R}^3$ with critical nonlinearities, Commun. Appl. Anal., 9 (2005), 161-176.   Google Scholar

[9]

P. Y. Ding and Z. J. Yang, Attractors for the strongly damped Kirchhoff wave equation on $\mathbb{R}^N$, Commun. Pure Appl. Anal., 18 (2019), 825-843.  doi: 10.3934/cpaa.2019040.  Google Scholar

[10]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Lett., 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[11]

M. A. Efendiev and S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Commun. Pure Appl. Math., 54 (2001), 625-688.  doi: 10.1002/cpa.1011.  Google Scholar

[12]

E. Feireisl, Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, P. Roy. Soc. Edinb. A, 125 (1995), 1051-1062.  doi: 10.1017/S0308210500022630.  Google Scholar

[13]

M. GhisiM. Gobbino and A. Haraux, Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation, T. Am. Math. Soc., 368 (2016), 2039-2079.  doi: 10.1090/tran/6520.  Google Scholar

[14]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differ. Equ., 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[15]

N. I. Karachalios and N. M. Stavrakakis, Existence of a global attractor for semilinear dissipative wave equation on ${\mathbb R}^N$, J. Differ. Equ., 157 (1999), 183-205.  doi: 10.1006/jdeq.1999.3618.  Google Scholar

[16]

N. I. Karachalios and N. M. Stavrakakis, Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb{R}^N$, Discrete Continuous Dynam. Systems, 8 (2002), 939-951.  doi: 10.3934/dcds.2002.8.939.  Google Scholar

[17]

H. MaJ. Zhang and C. Zhong, Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping, Discret. Contin. Dyn. S., 24 (2019), 4721-4737.  doi: 10.3934/dcdsb.2019027.  Google Scholar

[18]

H. Ma and C. Zhong, Attractors for the Kirchhoff equations with strong nonlinear damping, Appl. Math. Lett., 74 (2017), 127-133.  doi: 10.1016/j.aml.2017.06.002.  Google Scholar

[19]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[20]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains, Elsevier, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0..  Google Scholar

[21]

M. Nakao and C. S. Chen, On global attractors for a nonlinear parabolic equation of m-Laplacian type in $\mathbb{R}^N$, Funkcialaj Ekvacioj, 50 (2007), 449-468.  doi: 10.1619/fesi.50.449.  Google Scholar

[22]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1986), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[23]

M. StanislavovaA. Stefanov and B. X. Wang, Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on $\mathbb{R}^3$, J. Differ. Equ., 219 (2005), 451-483.  doi: 10.1016/j.jde.2005.08.004.  Google Scholar

[24]

R. Temam, Infinite-Dimensional Dynamical System in Mechanics and Physics, Springer-Verlag, NewYork, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[25]

B. X. Wang, Attractors for reaction-diffusion equation in unbounded domains, Phys. D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[26]

M. H. Yang and C. Y. Sun, Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity, T. Am. Math. Soc., 361 (2009), 1069-1101.  doi: 10.1090/S0002-9947-08-04680-1.  Google Scholar

[27]

Z. J. Yang, Longtime behavior of the Kirchhoff type equation with strong damping on $ \mathbb{R}^{N}$, J. Differ. Equ., 242 (2007), 269-286.  doi: 10.1016/j.jde.2007.08.004.  Google Scholar

[28]

Z. J. Yang and P. Y. Ding, Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 434 (2016), 1826-1851.  doi: 10.1016/j.jmaa.2015.10.013.  Google Scholar

show all references

References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differ. Equ., 83 (1990), 85-108.  doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, P. Roy. Soc. Edinb. A, 116 (1990), 221-243.  doi: 10.1017/S0308210500031498.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discret. Contin. Dyn. S., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $\mathbb{R}^3$, Discret. Contin. Dyn. S., 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[5]

J. Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase space analysis of partial differential equations, Centro, Edizioni, Scunla Normale superiore, 2004.  Google Scholar

[6]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differ. Equ., 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[8]

M. ContiV. Pata and M. Squassina, Strongly damped wave equations on $\mathbb{R}^3$ with critical nonlinearities, Commun. Appl. Anal., 9 (2005), 161-176.   Google Scholar

[9]

P. Y. Ding and Z. J. Yang, Attractors for the strongly damped Kirchhoff wave equation on $\mathbb{R}^N$, Commun. Pure Appl. Anal., 18 (2019), 825-843.  doi: 10.3934/cpaa.2019040.  Google Scholar

[10]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Lett., 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[11]

M. A. Efendiev and S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Commun. Pure Appl. Math., 54 (2001), 625-688.  doi: 10.1002/cpa.1011.  Google Scholar

[12]

E. Feireisl, Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, P. Roy. Soc. Edinb. A, 125 (1995), 1051-1062.  doi: 10.1017/S0308210500022630.  Google Scholar

[13]

M. GhisiM. Gobbino and A. Haraux, Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation, T. Am. Math. Soc., 368 (2016), 2039-2079.  doi: 10.1090/tran/6520.  Google Scholar

[14]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differ. Equ., 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[15]

N. I. Karachalios and N. M. Stavrakakis, Existence of a global attractor for semilinear dissipative wave equation on ${\mathbb R}^N$, J. Differ. Equ., 157 (1999), 183-205.  doi: 10.1006/jdeq.1999.3618.  Google Scholar

[16]

N. I. Karachalios and N. M. Stavrakakis, Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb{R}^N$, Discrete Continuous Dynam. Systems, 8 (2002), 939-951.  doi: 10.3934/dcds.2002.8.939.  Google Scholar

[17]

H. MaJ. Zhang and C. Zhong, Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping, Discret. Contin. Dyn. S., 24 (2019), 4721-4737.  doi: 10.3934/dcdsb.2019027.  Google Scholar

[18]

H. Ma and C. Zhong, Attractors for the Kirchhoff equations with strong nonlinear damping, Appl. Math. Lett., 74 (2017), 127-133.  doi: 10.1016/j.aml.2017.06.002.  Google Scholar

[19]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[20]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains, Elsevier, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0..  Google Scholar

[21]

M. Nakao and C. S. Chen, On global attractors for a nonlinear parabolic equation of m-Laplacian type in $\mathbb{R}^N$, Funkcialaj Ekvacioj, 50 (2007), 449-468.  doi: 10.1619/fesi.50.449.  Google Scholar

[22]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1986), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[23]

M. StanislavovaA. Stefanov and B. X. Wang, Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on $\mathbb{R}^3$, J. Differ. Equ., 219 (2005), 451-483.  doi: 10.1016/j.jde.2005.08.004.  Google Scholar

[24]

R. Temam, Infinite-Dimensional Dynamical System in Mechanics and Physics, Springer-Verlag, NewYork, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[25]

B. X. Wang, Attractors for reaction-diffusion equation in unbounded domains, Phys. D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[26]

M. H. Yang and C. Y. Sun, Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity, T. Am. Math. Soc., 361 (2009), 1069-1101.  doi: 10.1090/S0002-9947-08-04680-1.  Google Scholar

[27]

Z. J. Yang, Longtime behavior of the Kirchhoff type equation with strong damping on $ \mathbb{R}^{N}$, J. Differ. Equ., 242 (2007), 269-286.  doi: 10.1016/j.jde.2007.08.004.  Google Scholar

[28]

Z. J. Yang and P. Y. Ding, Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 434 (2016), 1826-1851.  doi: 10.1016/j.jmaa.2015.10.013.  Google Scholar

[1]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[2]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[3]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[4]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[5]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[6]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[7]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[8]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[9]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[10]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[11]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[12]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[13]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[14]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[15]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[16]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[19]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[20]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

2019 Impact Factor: 1.105

Article outline

[Back to Top]