-
Previous Article
Remark on 3-D Navier-Stokes system with strong dissipation in one direction
- CPAA Home
- This Issue
-
Next Article
Scale pressure for amenable group actions
Rational limit cycles of abel equations
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain |
2. | Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal |
We deal with Abel equations $ dy/dx = A(x) y^2 + B(x) y^3 $, where $ A(x) $ and $ B(x) $ are real polynomials. We prove that these Abel equations can have at most two rational limit cycles and we characterize when this happens. Moreover we provide examples of these Abel equations with two nontrivial rational limit cycles.
References:
[1] |
A. Álvarez, J. L. Bravo and M. Fernández, The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign, Commun. Pure Appl. Anal., 8 (2009), 1493-1501.
doi: 10.3934/cpaa.2009.8.1493. |
[2] |
M. J. Álvarez, J. L. Bravo and M. Fernández, Existence of non-trivial limit cycles in Abel equations with symmetries, Nonlinear Anal., 84 (2013), 18-28.
doi: 10.1016/j.na.2013.02.001. |
[3] |
A. Álvarez, J. L. Bravo and M. Fernández, Limit cycles of Abel equations of the first kind, J. Math. Anal. Appl., 423 (2015), 734-745.
doi: 10.1016/j.jmaa.2014.10.019. |
[4] |
M. J. Álvarez, J. L. Bravo, M. Fernández and R. Prohens, Centers and limit cycles for a family of Abel equations, J. Math. Anal. Appl., 453 (2017), 485-501.
doi: 10.1016/j.jmaa.2017.04.017. |
[5] |
M. J. Álvarez, J. L. Bravo, M. Fernández and R.Prohens, Alien limit cycles in Abel equations, J. Math. Anal. Appl., 482 (2020), 123525, 20 pp.
doi: 10.1016/j.jmaa.2019.123525. |
[6] |
M. J. Álvarez, A. Gasull and J. Yu, Lower bounds for the number of limit cycles of trigonometric Abel equations, J. Math. Anal. Appl., 342 (2008), 682-693.
doi: 10.1016/j.jmaa.2007.12.016. |
[7] |
M. A. M Alwash and N. G. Lloyd, Non-autonomous equations related to polylnomial two-dimensional systems, P. Roy. Soc. Edinb. A, 105 (1987), 129-152.
doi: 10.1017/S0308210500021971. |
[8] |
M. Blinov, M. Briskin and Y. Yomdin, Center conditions: parametric and model center problems, Israel J. Math., 118 (2000), 61-108.
doi: 10.1007/BF02803517. |
[9] |
J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 3869-3876.
doi: 10.1142/S0218127409025195. |
[10] |
J. L. Bravo, M. Fernández and A. Gasull, Stability of singular limit cycles for Abel equations, Discret. Contin. Dyn. S., 35 (2015), 1873-1890.
doi: 10.3934/dcds.2015.35.1873. |
[11] |
E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations, Phys. D, 237 (2008), 3159-3164.
doi: 10.1016/j.physd.2008.05.011. |
[12] |
J. P. Françoise, Local bifurcations of limit cycles, Abel equations and Liénard systems, in Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, Kluwer Acad. Publ., Dordrecht, 2004.
doi: 10.1007/978-94-007-1025-2_4. |
[13] |
J. P. Françoise, Integrability and limit cycles for Abel equations, Banach Center Publ., Warsaw, 2011.
doi: 10.4064/bc94-0-11. |
[14] |
A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.
doi: 10.1137/0521068. |
[15] |
A. Gasull, From Abel's differential equations to Hilbert's sixteenth problem, (Catalan), Butl. Soc. Catalana Mat., 28 (2013), 123-146. |
[16] |
J. Giné, M. Grau and J. Llibre, On the polynomial limit cycles of polynomial differential equations, Israel J. Math., 181 (2011), 461-475.
doi: 10.1007/s11856-011-0019-3. |
[17] |
J. Huang and H. Liang, Estimate for the number of limit cycles of Abel equation via a geometric criterion on three curves, Nonlinear Differ. Equ. Appl., 24 (2017), 31 pp.
doi: 10.1007/s00030-017-0469-3. |
[18] |
Y. Ilyashenko, Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions, Nonlinearity, 13 (2000), 1337-1342.
doi: 10.1088/0951-7715/13/4/319. |
[19] |
C. Liu, C. Li, X. Wang and J. Wu, On the rational limit cycles of Abel equations, Chaos, Solitons and Fractals, 110 (2018), 28-32.
doi: 10.1016/j.chaos.2018.03.004. |
[20] |
N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J London Math Soc., 20 (1979), 277-286.
doi: 10.1112/jlms/s2-20.2.277. |
[21] |
A. L. Neto, On the number of solutions of the equation $\frac{dx}{dt} = \sum_{j = 0}^n a_j (t) x^j$, $0 \le t \le 1$, for which $x(0) = x(1)$, Invent. Math., 59 (1980), 67-76.
doi: 10.1007/BF01390315. |
[22] |
P. Torres, Existence of closed solutions for a polynomial first order differential equation, J. Math. Anal. Appl., 328 (2007), 1108-1116.
doi: 10.1016/j.jmaa.2006.05.078. |
[23] |
G. D. Wang and W. C. Chen, The number of closed solutions to the Abel equation and its application, (Chinese), J. Systems Sci. Math. Sci., 25 (2005), 693-699. |
[24] |
X. D. Xie and S. L. Cai, The number of limit cycles for the Abel equation and its application(Chinese), Gaoxiao Yingyong Shuxue Xuebao Ser. A, 9 (1994), 266-274. |
[25] |
J. F. Zhang, Limit cycles for a class of Abel equations with coefficients that change sign(Chinese), Chinese Ann. Math. Ser. A, 18 (1997), 271-278. |
[26] |
J. F. Zhang and X. X. Chen, Some criteria for limit cycles of a class of Abel equations(Chinese), J. Fuzhou Univ. Nat. Sci. Ed., 27 (1999), 9-11. |
show all references
References:
[1] |
A. Álvarez, J. L. Bravo and M. Fernández, The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign, Commun. Pure Appl. Anal., 8 (2009), 1493-1501.
doi: 10.3934/cpaa.2009.8.1493. |
[2] |
M. J. Álvarez, J. L. Bravo and M. Fernández, Existence of non-trivial limit cycles in Abel equations with symmetries, Nonlinear Anal., 84 (2013), 18-28.
doi: 10.1016/j.na.2013.02.001. |
[3] |
A. Álvarez, J. L. Bravo and M. Fernández, Limit cycles of Abel equations of the first kind, J. Math. Anal. Appl., 423 (2015), 734-745.
doi: 10.1016/j.jmaa.2014.10.019. |
[4] |
M. J. Álvarez, J. L. Bravo, M. Fernández and R. Prohens, Centers and limit cycles for a family of Abel equations, J. Math. Anal. Appl., 453 (2017), 485-501.
doi: 10.1016/j.jmaa.2017.04.017. |
[5] |
M. J. Álvarez, J. L. Bravo, M. Fernández and R.Prohens, Alien limit cycles in Abel equations, J. Math. Anal. Appl., 482 (2020), 123525, 20 pp.
doi: 10.1016/j.jmaa.2019.123525. |
[6] |
M. J. Álvarez, A. Gasull and J. Yu, Lower bounds for the number of limit cycles of trigonometric Abel equations, J. Math. Anal. Appl., 342 (2008), 682-693.
doi: 10.1016/j.jmaa.2007.12.016. |
[7] |
M. A. M Alwash and N. G. Lloyd, Non-autonomous equations related to polylnomial two-dimensional systems, P. Roy. Soc. Edinb. A, 105 (1987), 129-152.
doi: 10.1017/S0308210500021971. |
[8] |
M. Blinov, M. Briskin and Y. Yomdin, Center conditions: parametric and model center problems, Israel J. Math., 118 (2000), 61-108.
doi: 10.1007/BF02803517. |
[9] |
J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 3869-3876.
doi: 10.1142/S0218127409025195. |
[10] |
J. L. Bravo, M. Fernández and A. Gasull, Stability of singular limit cycles for Abel equations, Discret. Contin. Dyn. S., 35 (2015), 1873-1890.
doi: 10.3934/dcds.2015.35.1873. |
[11] |
E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations, Phys. D, 237 (2008), 3159-3164.
doi: 10.1016/j.physd.2008.05.011. |
[12] |
J. P. Françoise, Local bifurcations of limit cycles, Abel equations and Liénard systems, in Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, Kluwer Acad. Publ., Dordrecht, 2004.
doi: 10.1007/978-94-007-1025-2_4. |
[13] |
J. P. Françoise, Integrability and limit cycles for Abel equations, Banach Center Publ., Warsaw, 2011.
doi: 10.4064/bc94-0-11. |
[14] |
A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.
doi: 10.1137/0521068. |
[15] |
A. Gasull, From Abel's differential equations to Hilbert's sixteenth problem, (Catalan), Butl. Soc. Catalana Mat., 28 (2013), 123-146. |
[16] |
J. Giné, M. Grau and J. Llibre, On the polynomial limit cycles of polynomial differential equations, Israel J. Math., 181 (2011), 461-475.
doi: 10.1007/s11856-011-0019-3. |
[17] |
J. Huang and H. Liang, Estimate for the number of limit cycles of Abel equation via a geometric criterion on three curves, Nonlinear Differ. Equ. Appl., 24 (2017), 31 pp.
doi: 10.1007/s00030-017-0469-3. |
[18] |
Y. Ilyashenko, Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions, Nonlinearity, 13 (2000), 1337-1342.
doi: 10.1088/0951-7715/13/4/319. |
[19] |
C. Liu, C. Li, X. Wang and J. Wu, On the rational limit cycles of Abel equations, Chaos, Solitons and Fractals, 110 (2018), 28-32.
doi: 10.1016/j.chaos.2018.03.004. |
[20] |
N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J London Math Soc., 20 (1979), 277-286.
doi: 10.1112/jlms/s2-20.2.277. |
[21] |
A. L. Neto, On the number of solutions of the equation $\frac{dx}{dt} = \sum_{j = 0}^n a_j (t) x^j$, $0 \le t \le 1$, for which $x(0) = x(1)$, Invent. Math., 59 (1980), 67-76.
doi: 10.1007/BF01390315. |
[22] |
P. Torres, Existence of closed solutions for a polynomial first order differential equation, J. Math. Anal. Appl., 328 (2007), 1108-1116.
doi: 10.1016/j.jmaa.2006.05.078. |
[23] |
G. D. Wang and W. C. Chen, The number of closed solutions to the Abel equation and its application, (Chinese), J. Systems Sci. Math. Sci., 25 (2005), 693-699. |
[24] |
X. D. Xie and S. L. Cai, The number of limit cycles for the Abel equation and its application(Chinese), Gaoxiao Yingyong Shuxue Xuebao Ser. A, 9 (1994), 266-274. |
[25] |
J. F. Zhang, Limit cycles for a class of Abel equations with coefficients that change sign(Chinese), Chinese Ann. Math. Ser. A, 18 (1997), 271-278. |
[26] |
J. F. Zhang and X. X. Chen, Some criteria for limit cycles of a class of Abel equations(Chinese), J. Fuzhou Univ. Nat. Sci. Ed., 27 (1999), 9-11. |
[1] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[2] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[3] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[4] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[5] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[6] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[7] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[8] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[9] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[10] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[11] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[12] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[13] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[14] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[15] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[16] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[17] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[18] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[19] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[20] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]