March  2021, 20(3): 1091-1102. doi: 10.3934/cpaa.2021008

Scale pressure for amenable group actions

School of Mathematics, Northwest University, Xi'an, 710127, China

* Corresponding author

Received  July 2020 Revised  November 2020 Published  March 2021 Early access  January 2021

Fund Project: The third author is supported by NSFC (No.11871394), and Natural Science Foundation of Shaanxi Province (2020JC-39)

In this paper we introduce the notion of scale pressure and measure theoretic scale pressure for amenable group actions. A variational principle for amenable group actions is presented. We also describe these quantities by pseudo-orbits. Moreover, we prove that if $ G $ is a finitely generated countable discrete amenable group, then the scale pressure of $ G $ coincides with the scale pressure of $ G $ with respect to pseudo-orbits.

Citation: Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008
References:
[1]

N. P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, P. Am. Math. Soc., 146 (2018), 1047-1057.  doi: 10.1090/proc/13654.  Google Scholar

[2]

T. Downarowicz, B. Frej and P. P. Romagnoli, Shearer's inequality and Infimum Rule for Shannon entropy and topological entropy, in Contributions to Dynamics and numbers, American Mathematical Society, 2016. doi: 10.1090/conm/669/13423.  Google Scholar

[3]

M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps, I. Math. Phys. Anal. Geom., 2 (1999), 323-415.  doi: 10.1023/A:1009841100168.  Google Scholar

[4]

W. HuangX. Ye and G. Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal., 261 (2010), 1028-1082.  doi: 10.1016/j.jfa.2011.04.014.  Google Scholar

[5]

E. Lindenstrauss and M. Tsukamoto, From rate distortion theory to metric mean dimension: variational principle, IEEE T. Inform. Theory, 64 (2018), 3590-3609.  doi: 10.1109/TIT.2018.2806219.  Google Scholar

[6]

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259-295.  doi: 10.1007/s002220100162.  Google Scholar

[7]

E. Lindenstrauss and M. Tsukamoto., Double variational principle for mean dimension, Geom. Funct. Anal., 29 (2019), 1048-1109.  doi: 10.1007/s00039-019-00501-8.  Google Scholar

[8]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[9]

T. Meyerovitch, Pseudo-orbit tracing and algebraic actions of countable amenable groups, Ergod. Theor. Dyn. Syst., 39 (2019), 2570-2591.  doi: 10.1017/etds.2017.126.  Google Scholar

[10]

D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987), 1-141.  doi: 10.1007/BF02790325.  Google Scholar

[11]

M. Tsukamoto, Double variational principle for mean dimension with potential, Adv. Math., 361 (2020), 106935. doi: 10.1016/j.aim.2019.106935.  Google Scholar

[12]

A. Velozo and R. Velozo, Rate distortion theory, metric mean dimension and measure theoretic entropy, preprint, arXiv: math/1707.05762. Google Scholar

[13] B. Weiss, Actions of amenable groups, Topics in Dynamics and Ergodic Theory, Cambridge Univ. Press, 2003.  doi: 10.1017/CBO9780511546716.012.  Google Scholar
[14]

Y. Zhao, Measure-theoretic pressure for amenable group actions, Colloq. Math., 148 (2017), 87-106.  doi: 10.4064/cm6784-6-2016.  Google Scholar

[15]

D. ZhengE. Chen and J. Yang, On large deviations for amenable group actions, Discrete Contin. Dynam. Systems, 36 (2016), 7191-7206.  doi: 10.3934/dcds.2016113.  Google Scholar

[16]

Y. Zhou, Tail variational principle for a countable discrete amenable group action, J. Math. Anal. Appl., 433 (2016), 1513-1530.  doi: 10.1016/j.jmaa.2015.08.058.  Google Scholar

[17]

K. Yano, A remark on the topological entropy of homeomorphisms, Invent. Math., 59 (1980), 215-220.  doi: 10.1007/BF01453235.  Google Scholar

show all references

References:
[1]

N. P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, P. Am. Math. Soc., 146 (2018), 1047-1057.  doi: 10.1090/proc/13654.  Google Scholar

[2]

T. Downarowicz, B. Frej and P. P. Romagnoli, Shearer's inequality and Infimum Rule for Shannon entropy and topological entropy, in Contributions to Dynamics and numbers, American Mathematical Society, 2016. doi: 10.1090/conm/669/13423.  Google Scholar

[3]

M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps, I. Math. Phys. Anal. Geom., 2 (1999), 323-415.  doi: 10.1023/A:1009841100168.  Google Scholar

[4]

W. HuangX. Ye and G. Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal., 261 (2010), 1028-1082.  doi: 10.1016/j.jfa.2011.04.014.  Google Scholar

[5]

E. Lindenstrauss and M. Tsukamoto, From rate distortion theory to metric mean dimension: variational principle, IEEE T. Inform. Theory, 64 (2018), 3590-3609.  doi: 10.1109/TIT.2018.2806219.  Google Scholar

[6]

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259-295.  doi: 10.1007/s002220100162.  Google Scholar

[7]

E. Lindenstrauss and M. Tsukamoto., Double variational principle for mean dimension, Geom. Funct. Anal., 29 (2019), 1048-1109.  doi: 10.1007/s00039-019-00501-8.  Google Scholar

[8]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[9]

T. Meyerovitch, Pseudo-orbit tracing and algebraic actions of countable amenable groups, Ergod. Theor. Dyn. Syst., 39 (2019), 2570-2591.  doi: 10.1017/etds.2017.126.  Google Scholar

[10]

D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987), 1-141.  doi: 10.1007/BF02790325.  Google Scholar

[11]

M. Tsukamoto, Double variational principle for mean dimension with potential, Adv. Math., 361 (2020), 106935. doi: 10.1016/j.aim.2019.106935.  Google Scholar

[12]

A. Velozo and R. Velozo, Rate distortion theory, metric mean dimension and measure theoretic entropy, preprint, arXiv: math/1707.05762. Google Scholar

[13] B. Weiss, Actions of amenable groups, Topics in Dynamics and Ergodic Theory, Cambridge Univ. Press, 2003.  doi: 10.1017/CBO9780511546716.012.  Google Scholar
[14]

Y. Zhao, Measure-theoretic pressure for amenable group actions, Colloq. Math., 148 (2017), 87-106.  doi: 10.4064/cm6784-6-2016.  Google Scholar

[15]

D. ZhengE. Chen and J. Yang, On large deviations for amenable group actions, Discrete Contin. Dynam. Systems, 36 (2016), 7191-7206.  doi: 10.3934/dcds.2016113.  Google Scholar

[16]

Y. Zhou, Tail variational principle for a countable discrete amenable group action, J. Math. Anal. Appl., 433 (2016), 1513-1530.  doi: 10.1016/j.jmaa.2015.08.058.  Google Scholar

[17]

K. Yano, A remark on the topological entropy of homeomorphisms, Invent. Math., 59 (1980), 215-220.  doi: 10.1007/BF01453235.  Google Scholar

[1]

Xiaojun Huang, Zhiqiang Li, Yunhua Zhou. A variational principle of topological pressure on subsets for amenable group actions. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2687-2703. doi: 10.3934/dcds.2020146

[2]

Xiaojun Huang, Yuan Lian, Changrong Zhu. A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 959-993. doi: 10.3934/dcds.2019040

[3]

Zheng Yin, Ercai Chen. The conditional variational principle for maps with the pseudo-orbit tracing property. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 463-481. doi: 10.3934/dcds.2019019

[4]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[5]

Tao Yu, Guohua Zhang, Ruifeng Zhang. Discrete spectrum for amenable group actions. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021099

[6]

Guohua Zhang. Variational principles of pressure. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409

[7]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[8]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[9]

Jean-Paul Thouvenot. The work of Lewis Bowen on the entropy theory of non-amenable group actions. Journal of Modern Dynamics, 2019, 15: 133-141. doi: 10.3934/jmd.2019016

[10]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[11]

Piotr Oprocha, Xinxing Wu. On averaged tracing of periodic average pseudo orbits. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4943-4957. doi: 10.3934/dcds.2017212

[12]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[13]

Werner Bauer, François Gay-Balmaz. Variational integrators for anelastic and pseudo-incompressible flows. Journal of Geometric Mechanics, 2019, 11 (4) : 511-537. doi: 10.3934/jgm.2019025

[14]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[15]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[16]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

[17]

Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085

[18]

Xianfeng Ma, Ercai Chen. Pre-image variational principle for bundle random dynamical systems. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 957-972. doi: 10.3934/dcds.2009.23.957

[19]

Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1269-1290. doi: 10.3934/dcdss.2020073

[20]

Yuika Kajihara, Misturu Shibayama. Variational proof of the existence of brake orbits in the planar 2-center problem. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5785-5797. doi: 10.3934/dcds.2019254

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (77)
  • HTML views (136)
  • Cited by (0)

Other articles
by authors

[Back to Top]