\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Approximation of a stochastic two-phase flow model by a splitting-up method

  • * Corresponding author

    * Corresponding author
The first author is supported by the Fulbright Scholar Program Advanced Research and the Florida International University, 2019
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider a stochastic Allen-Cahn Navier-Stokes system in a bounded domain of $ \mathbb{R}^d, $ $ d = 2,3 $. The system models the evolution of an incompressible isothermal mixture of binary fluids under the influence of stochastic external forces. We prove the existence of a global weak martingale solution. The proof is based on splitting-up method as well as some compactness method.

    Mathematics Subject Classification: 35R60, 35Q35, 60H15, 76M35, 86A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] D. C. AntonopoulouG. Karali and A. Millet, Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion, J. Differ. Equ., 260 (2016), 2383-2417.  doi: 10.1016/j.jde.2015.10.004.
    [2] A. Bensoussan, Some existence results for stochastic partial differential equations. In Stochastic Partial Differential Equations and Applications, Pitman Res.Notes, Math. Ser., 268, Longman Scientific and Technical, Harlow, UK, (1992), 37-53.
    [3] A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38, 267-304. doi: 10.1007/BF00996149.
    [4] A. BensoussanR. Glowinski and A. Rascanu, Approximation of some stochastic differential equations by the splitting-up method, Appl. Math. Optim., 25 (1992), 81-106.  doi: 10.1007/BF01184157.
    [5] P. Billingsley, Convergence of Probability Measures, 2nd edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962.
    [6] Z. BrzeźniakB. Goldys and T. Jegaraj, Weak solutions of a stochastic Landau-Lifshitz-Gilbert equation, Appl. Math. Res. Express., 1 (2013), 1-33.  doi: 10.1093/amrx/abs009.
    [7] G. Da Prato and  J. ZabczykStochastic Equations in Infinite Dimensions: Second Edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.  doi: 10.1017/CBO9781107295513.
    [8] S. Dai and Q. Du, Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility, Arch. Rational Mech. Anal., 219 (2016), 1161-1184.  doi: 10.1007/s00205-015-0918-2.
    [9] G. Deugoue and M. Sango, Convergence for a Splitting-Up Scheme for the 3D Stochastic Navier-Stokes-$\alpha$ Model, Stoch. Anal. Appl., 32 (2014), 253-279.  doi: 10.1080/07362994.2013.862359.
    [10] L. C. Evans, Partial Differential Equations, Graduate studies in Mathematics, American Mathematical society, 1997.
    [11] X. FengY. He and C. Liu, Analysis of finite element approximations of a phase field model for two-phase, Fluids. Math. Comput., 76 (2007), 539-571.  doi: 10.1090/S0025-5718-06-01915-6.
    [12] F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.
    [13] G. B. Folland, Real analysis. Pure and Applied Mathematics, John Wiley and Sons Inc, New York, 1999.
    [14] C. G. Gal and M. Grasselli, behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. S., 28 (2010), 1-39.  doi: 10.3934/dcds.2010.28.1.
    [15] N. Y. Goncharuk and P. Kotelenez, Fractional step method for stochastic evolution equations, Stochastic Processes Appl., 73 (1998), 1-45.  doi: 10.1016/S0304-4149(97)00079-3.
    [16] L. Goudenège and L. Manca, Stochastic phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model, arXiv: 1901.01335.
    [17] W. Grecksch, A splitting up method for nonlinear parabolic Ito equations, preprint, Martin-Luther-Universitat, Halle-Wittenberg, 1996.
    [18] I. Gyöngy and N. Krylov, On the splitting-up method and stochastic partial differential equations, Ann. Probab., 31 (2003), 564-591.  doi: 10.1214/aop/1048516528.
    [19] C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximations by Fourier-spectral method, Phys. D, 179 (2003), 211-228.  doi: 10.1016/S0167-2789(03)00030-7.
    [20] N. Nagase, Remarks on nonlinear stochastic partial differential equations: an application of the splitting-up method, SIAM J. Control Optim., 33 (1995), 1716-1730.  doi: 10.1137/S036301299324618X.
    [21] E. Pardoux, Equations and Dérivées Partielles Stochastiques Non Linéaires Monotones, Thèse Université Paris XI, 1975.
    [22] K. R. ParthasarathyProbability Measures on Metric Spaces, Probability and Mathematical Statistics, Academic Press, Inc., New York-London, 1967. 
    [23] D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition, in Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-06400-9.
    [24] M. Sango, Splitting-up scheme for nonlinear stochastic hyperbolic equations, Forum Math., 25 (2013), 931-965.  doi: 10.1515/form.2011.138.
    [25] T. Tachim Medjo, On the convergence of a stochastic 3D globally modified two-phase flow model, Discret. Contin. Dyn. S., 39 (2019), 395-430.  doi: 10.3934/dcds.2019016.
    [26] T. Tachim Medjo, On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model, Stoch. Dynam., 19 (2018), 28 pp. doi: 10.1142/S0219493719500072.
    [27] T. Tachim Medjo, A two-phase flow model with delays, Discrete Cont. Dyn-B, 22 (2017), 1-17.  doi: 10.3934/dcdsb.2017137.
    [28] T. Tachim Medjo, Pullback $\mathbb{V}$-attractor of a three dimensional globally modified two-phase flow model, Discrete Cont. Dyn. S., 38 (2018), 2141-2169.  doi: 10.3934/dcds.2018088.
    [29] T. Tachim MedjoC. Tone and F. Tone, Long-time dynamics of a regularized family of models for homogeneous incompressible two-phase flows, Asymptotic Anal., 94 (2015), 125-160.  doi: 10.3233/ASY-151309.
  • 加载中
SHARE

Article Metrics

HTML views(361) PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return