In this paper, we consider a stochastic Allen-Cahn Navier-Stokes system in a bounded domain of $ \mathbb{R}^d, $ $ d = 2,3 $. The system models the evolution of an incompressible isothermal mixture of binary fluids under the influence of stochastic external forces. We prove the existence of a global weak martingale solution. The proof is based on splitting-up method as well as some compactness method.
Citation: |
[1] |
D. C. Antonopoulou, G. Karali and A. Millet, Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion, J. Differ. Equ., 260 (2016), 2383-2417.
doi: 10.1016/j.jde.2015.10.004.![]() ![]() ![]() |
[2] |
A. Bensoussan, Some existence results for stochastic partial differential equations. In Stochastic Partial Differential Equations and Applications, Pitman Res.Notes, Math. Ser., 268, Longman Scientific and Technical, Harlow, UK, (1992), 37-53.
![]() ![]() |
[3] |
A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38, 267-304.
doi: 10.1007/BF00996149.![]() ![]() ![]() |
[4] |
A. Bensoussan, R. Glowinski and A. Rascanu, Approximation of some stochastic differential equations by the splitting-up method, Appl. Math. Optim., 25 (1992), 81-106.
doi: 10.1007/BF01184157.![]() ![]() ![]() |
[5] |
P. Billingsley, Convergence of Probability Measures, 2nd edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999.
doi: 10.1002/9780470316962.![]() ![]() ![]() |
[6] |
Z. Brzeźniak, B. Goldys and T. Jegaraj, Weak solutions of a stochastic Landau-Lifshitz-Gilbert equation, Appl. Math. Res. Express., 1 (2013), 1-33.
doi: 10.1093/amrx/abs009.![]() ![]() ![]() |
[7] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions: Second Edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() ![]() |
[8] |
S. Dai and Q. Du, Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility, Arch. Rational Mech. Anal., 219 (2016), 1161-1184.
doi: 10.1007/s00205-015-0918-2.![]() ![]() ![]() |
[9] |
G. Deugoue and M. Sango, Convergence for a Splitting-Up Scheme for the 3D Stochastic Navier-Stokes-$\alpha$ Model, Stoch. Anal. Appl., 32 (2014), 253-279.
doi: 10.1080/07362994.2013.862359.![]() ![]() ![]() |
[10] |
L. C. Evans, Partial Differential Equations, Graduate studies in Mathematics, American Mathematical society, 1997.
![]() ![]() |
[11] |
X. Feng, Y. He and C. Liu, Analysis of finite element approximations of a phase field model for two-phase, Fluids. Math. Comput., 76 (2007), 539-571.
doi: 10.1090/S0025-5718-06-01915-6.![]() ![]() ![]() |
[12] |
F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467.![]() ![]() ![]() |
[13] |
G. B. Folland, Real analysis. Pure and Applied Mathematics, John Wiley and Sons Inc, New York, 1999.
![]() ![]() |
[14] |
C. G. Gal and M. Grasselli, behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. S., 28 (2010), 1-39.
doi: 10.3934/dcds.2010.28.1.![]() ![]() ![]() |
[15] |
N. Y. Goncharuk and P. Kotelenez, Fractional step method for stochastic evolution equations, Stochastic Processes Appl., 73 (1998), 1-45.
doi: 10.1016/S0304-4149(97)00079-3.![]() ![]() ![]() |
[16] |
L. Goudenège and L. Manca, Stochastic phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model, arXiv: 1901.01335.
![]() |
[17] |
W. Grecksch, A splitting up method for nonlinear parabolic Ito equations, preprint, Martin-Luther-Universitat, Halle-Wittenberg, 1996.
![]() |
[18] |
I. Gyöngy and N. Krylov, On the splitting-up method and stochastic partial differential equations, Ann. Probab., 31 (2003), 564-591.
doi: 10.1214/aop/1048516528.![]() ![]() ![]() |
[19] |
C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximations by Fourier-spectral method, Phys. D, 179 (2003), 211-228.
doi: 10.1016/S0167-2789(03)00030-7.![]() ![]() ![]() |
[20] |
N. Nagase, Remarks on nonlinear stochastic partial differential equations: an application of the splitting-up method, SIAM J. Control Optim., 33 (1995), 1716-1730.
doi: 10.1137/S036301299324618X.![]() ![]() ![]() |
[21] |
E. Pardoux, Equations and Dérivées Partielles Stochastiques Non Linéaires Monotones, Thèse Université Paris XI, 1975.
![]() |
[22] |
K. R. Parthasarathy, Probability Measures on Metric Spaces, Probability and Mathematical Statistics, Academic Press, Inc., New York-London, 1967.
![]() ![]() |
[23] |
D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition, in Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-06400-9.![]() ![]() ![]() |
[24] |
M. Sango, Splitting-up scheme for nonlinear stochastic hyperbolic equations, Forum Math., 25 (2013), 931-965.
doi: 10.1515/form.2011.138.![]() ![]() ![]() |
[25] |
T. Tachim Medjo, On the convergence of a stochastic 3D globally modified two-phase flow model, Discret. Contin. Dyn. S., 39 (2019), 395-430.
doi: 10.3934/dcds.2019016.![]() ![]() ![]() |
[26] |
T. Tachim Medjo, On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model, Stoch. Dynam., 19 (2018), 28 pp.
doi: 10.1142/S0219493719500072.![]() ![]() ![]() |
[27] |
T. Tachim Medjo, A two-phase flow model with delays, Discrete Cont. Dyn-B, 22 (2017), 1-17.
doi: 10.3934/dcdsb.2017137.![]() ![]() ![]() |
[28] |
T. Tachim Medjo, Pullback $\mathbb{V}$-attractor of a three dimensional globally modified two-phase flow model, Discrete Cont. Dyn. S., 38 (2018), 2141-2169.
doi: 10.3934/dcds.2018088.![]() ![]() ![]() |
[29] |
T. Tachim Medjo, C. Tone and F. Tone, Long-time dynamics of a regularized family of models for homogeneous incompressible two-phase flows, Asymptotic Anal., 94 (2015), 125-160.
doi: 10.3233/ASY-151309.![]() ![]() ![]() |