\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we obtain the interior gradient estimate of the Hessian quotient curvature equation in the hyperbolic space. The method depends on the maximum principle.

    Mathematics Subject Classification: Primary:35J60;Secondary:35B45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. A. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations IV: Starshaped compact Weigarten hypersurfaces, in Current topics in partial differential equations, Kinokunize, Tokyo, 1985.
    [2] L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations III, Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261-301.  doi: 10.1007/BF02392544.
    [3] C. Q. Chen, The interior gradient estimate of Hessian quotient equations, J. Differ. Equ., 259 (2015), 1014-1023.  doi: 10.1016/j.jde.2015.02.035.
    [4] C. Q. ChenL. Xu and D. k. Zhang, The interior gradient estimate of prescribed Hessian quotient curvature equations, manuscripta mathematica, 153 (2016), 1-13.  doi: 10.1007/s00229-016-0877-4.
    [5] K. S. Chou and X. J. Wang, A variation theory of the Hessian equation., Commun. Pure Appl. Math., 54 (2001), 1029-1064.  doi: 10.1002/cpa.1016.
    [6] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977.
    [7] B. Guan and J. Spruck, Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity, Am. J. Math., 122 (2000), 1039–1060.
    [8] B. GuanJ. Spruck and M. Szapiel, Hypersurfaces of constant curvature in hyperbolic space, J. Geom. Anal., 19 (2009), 772-795.  doi: 10.1007/s12220-009-9086-7.
    [9] N. J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. H. Poincaré, Anal. Non linéaire, 4 (1987), 405-421. 
    [10] G. Lieberman, Second order parabolic differential equations, World Scientific, 1996. doi: 10.1142/3302.
    [11] Y. Y. Li, Interior gradient estimates for solutions of certain fully nonlinear elliptic equations, J. Differ. Equ., 90 (1991), 172-185.  doi: 10.1016/0022-0396(91)90166-7.
    [12] M. Lin and N. Trudinger, On some inequalities for elementary symmetric functions, Bull. Austral. Math. Soc., 50 (1994), 317-326.  doi: 10.1017/S0004972700013770.
    [13] J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, Clay Mathematics Proceedings, 2 (2005), 283-309. 
    [14] N. S. Trudinger, The Dirichlet problem for the precribed curvature equations, Arch. Ration. Mech. Anal., 111 (1990), 152-179.  doi: 10.1007/BF00375406.
    [15] X. J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73-81.  doi: 10.1007/PL00004604.
    [16] L. Weng, The interior gradient estimate for some nonlinear curvature equations, Commun. Pure Appl. Anal., 18 (2019), 1601-1612.  doi: 10.3934/cpaa.2019076.
  • 加载中
SHARE

Article Metrics

HTML views(281) PDF downloads(235) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return