March  2021, 20(3): 1187-1198. doi: 10.3934/cpaa.2021012

The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space

1. 

School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, Anhui Province, China

2. 

School of Mathematics and Statistics, Fuyang Normal University, Fuyang 236037, Anhui Province, China

* Corresponding author

Received  August 2020 Revised  December 2020 Published  March 2021 Early access  February 2021

In this paper, we obtain the interior gradient estimate of the Hessian quotient curvature equation in the hyperbolic space. The method depends on the maximum principle.

Citation: Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012
References:
[1]

L. A. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations IV: Starshaped compact Weigarten hypersurfaces, in Current topics in partial differential equations, Kinokunize, Tokyo, 1985.  Google Scholar

[2]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations III, Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261-301.  doi: 10.1007/BF02392544.  Google Scholar

[3]

C. Q. Chen, The interior gradient estimate of Hessian quotient equations, J. Differ. Equ., 259 (2015), 1014-1023.  doi: 10.1016/j.jde.2015.02.035.  Google Scholar

[4]

C. Q. ChenL. Xu and D. k. Zhang, The interior gradient estimate of prescribed Hessian quotient curvature equations, manuscripta mathematica, 153 (2016), 1-13.  doi: 10.1007/s00229-016-0877-4.  Google Scholar

[5]

K. S. Chou and X. J. Wang, A variation theory of the Hessian equation., Commun. Pure Appl. Math., 54 (2001), 1029-1064.  doi: 10.1002/cpa.1016.  Google Scholar

[6]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[7]

B. Guan and J. Spruck, Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity, Am. J. Math., 122 (2000), 1039–1060.  Google Scholar

[8]

B. GuanJ. Spruck and M. Szapiel, Hypersurfaces of constant curvature in hyperbolic space, J. Geom. Anal., 19 (2009), 772-795.  doi: 10.1007/s12220-009-9086-7.  Google Scholar

[9]

N. J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. H. Poincaré, Anal. Non linéaire, 4 (1987), 405-421.   Google Scholar

[10]

G. Lieberman, Second order parabolic differential equations, World Scientific, 1996. doi: 10.1142/3302.  Google Scholar

[11]

Y. Y. Li, Interior gradient estimates for solutions of certain fully nonlinear elliptic equations, J. Differ. Equ., 90 (1991), 172-185.  doi: 10.1016/0022-0396(91)90166-7.  Google Scholar

[12]

M. Lin and N. Trudinger, On some inequalities for elementary symmetric functions, Bull. Austral. Math. Soc., 50 (1994), 317-326.  doi: 10.1017/S0004972700013770.  Google Scholar

[13]

J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, Clay Mathematics Proceedings, 2 (2005), 283-309.   Google Scholar

[14]

N. S. Trudinger, The Dirichlet problem for the precribed curvature equations, Arch. Ration. Mech. Anal., 111 (1990), 152-179.  doi: 10.1007/BF00375406.  Google Scholar

[15]

X. J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73-81.  doi: 10.1007/PL00004604.  Google Scholar

[16]

L. Weng, The interior gradient estimate for some nonlinear curvature equations, Commun. Pure Appl. Anal., 18 (2019), 1601-1612.  doi: 10.3934/cpaa.2019076.  Google Scholar

show all references

References:
[1]

L. A. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations IV: Starshaped compact Weigarten hypersurfaces, in Current topics in partial differential equations, Kinokunize, Tokyo, 1985.  Google Scholar

[2]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations III, Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261-301.  doi: 10.1007/BF02392544.  Google Scholar

[3]

C. Q. Chen, The interior gradient estimate of Hessian quotient equations, J. Differ. Equ., 259 (2015), 1014-1023.  doi: 10.1016/j.jde.2015.02.035.  Google Scholar

[4]

C. Q. ChenL. Xu and D. k. Zhang, The interior gradient estimate of prescribed Hessian quotient curvature equations, manuscripta mathematica, 153 (2016), 1-13.  doi: 10.1007/s00229-016-0877-4.  Google Scholar

[5]

K. S. Chou and X. J. Wang, A variation theory of the Hessian equation., Commun. Pure Appl. Math., 54 (2001), 1029-1064.  doi: 10.1002/cpa.1016.  Google Scholar

[6]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[7]

B. Guan and J. Spruck, Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity, Am. J. Math., 122 (2000), 1039–1060.  Google Scholar

[8]

B. GuanJ. Spruck and M. Szapiel, Hypersurfaces of constant curvature in hyperbolic space, J. Geom. Anal., 19 (2009), 772-795.  doi: 10.1007/s12220-009-9086-7.  Google Scholar

[9]

N. J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. H. Poincaré, Anal. Non linéaire, 4 (1987), 405-421.   Google Scholar

[10]

G. Lieberman, Second order parabolic differential equations, World Scientific, 1996. doi: 10.1142/3302.  Google Scholar

[11]

Y. Y. Li, Interior gradient estimates for solutions of certain fully nonlinear elliptic equations, J. Differ. Equ., 90 (1991), 172-185.  doi: 10.1016/0022-0396(91)90166-7.  Google Scholar

[12]

M. Lin and N. Trudinger, On some inequalities for elementary symmetric functions, Bull. Austral. Math. Soc., 50 (1994), 317-326.  doi: 10.1017/S0004972700013770.  Google Scholar

[13]

J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, Clay Mathematics Proceedings, 2 (2005), 283-309.   Google Scholar

[14]

N. S. Trudinger, The Dirichlet problem for the precribed curvature equations, Arch. Ration. Mech. Anal., 111 (1990), 152-179.  doi: 10.1007/BF00375406.  Google Scholar

[15]

X. J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73-81.  doi: 10.1007/PL00004604.  Google Scholar

[16]

L. Weng, The interior gradient estimate for some nonlinear curvature equations, Commun. Pure Appl. Anal., 18 (2019), 1601-1612.  doi: 10.3934/cpaa.2019076.  Google Scholar

[1]

Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076

[2]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[3]

Feida Jiang, Xi Chen, Juhua Shi. Nonexistence of entire positive solutions for conformal Hessian quotient inequalities. Electronic Research Archive, , () : -. doi: 10.3934/era.2021072

[4]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[5]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[6]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[7]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[8]

Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7

[9]

Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37

[10]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[11]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[12]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

[13]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[14]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[15]

Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248

[16]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[17]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[18]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[19]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[20]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (99)
  • HTML views (136)
  • Cited by (0)

Other articles
by authors

[Back to Top]