-
Previous Article
Existence of solution and asymptotic behavior for a class of parabolic equations
- CPAA Home
- This Issue
-
Next Article
Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation
Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration
1. | Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826 and Korea Institute for Advanced Study, Hoegiro 87, Seoul, 130-722, Republic of Korea |
2. | Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742, USA |
3. | Stochastic Analysis and Application Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea |
We study phase concentration for the Kuramoto-Sakaguchi(K-S) equation with frustration via detailed estimates on the dynamics of order parameters. The Kuramoto order parameters measure the overall degree of phase concentrations. When the coupling strength is sufficiently large and the size of frustration parameter is sufficiently small, we show that the amplitude order parameter has a positive lower bound uniformly in time, and we also show that the total mass concentrates on the translated phase order parameter by a frustration parameter asymptotically, whereas the mass in the region around the antipodal point decays to zero exponentially fast.
References:
[1] |
J. A. Acebrón, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler,
The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern. Phys., 77 (2005), 137-185.
doi: 10.1103/RevModPhys.77.137. |
[2] |
D. Amadori, S. Y. Ha and J. Park,
On the global well-posedness of BV weak solutions for the Kuramoto-akaguchi equation, J. Differ. Equ., 262 (2017), 978-1022.
doi: 10.1016/j.jde.2016.10.004. |
[3] |
D. Benedetto, E. Caglioti and U. Montemagno,
On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.
doi: 10.4310/CMS.2015.v13.n7.a6. |
[4] |
D. Benedetto, E. Caglioti and U. Montemagno,
Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.
doi: 10.1007/s10955-015-1426-3. |
[5] |
M. Brede and A. C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model, Phys. Rev. E, 93 (2916), 062315, 13 pp.
doi: 10.1103/PhysRevE.93.062315. |
[6] |
J. A. Carrillo, Y. P. Choi, S. Y. Ha, M. J. Kang and Y. Kim,
Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.
doi: 10.1007/s10955-014-1005-z. |
[7] |
Y. Choi, S. Y. Ha, S. Jung and Y. Kim,
Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.
doi: 10.1016/j.physd.2011.11.011. |
[8] |
H. Chiba,
Continuous limit of the moments system for the globally coupled phase oscillators, Discrete Contin. Dyn. Syst., 33 (2013), 1891-1903.
doi: 10.3934/dcds.2013.33.1891. |
[9] |
N. Chopra and M. W. Spong,
On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control, 54 (2009), 353-357.
doi: 10.1109/TAC.2008.2007884. |
[10] |
H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076. Google Scholar |
[11] |
F. De Smet and D. Aeyels,
Partial entrainment in the finite Kuramoto-Sakaguchi model, Physica D, 234 (2007), 81-89.
doi: 10.1016/j.physd.2007.06.025. |
[12] |
H. Dietert, B. Fernandez and D. Gérard-Varet,
Landau damping to partially locked states in the Kuramoto model, Commun. Pure Appl. Math., 71 (2018), 953-993.
doi: 10.1002/cpa.21741. |
[13] |
J. G. Dong and X. Xue,
Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.
doi: 10.4310/CMS.2013.v11.n2.a7. |
[14] |
F. Dörfler and F. Bullo,
Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.
doi: 10.1137/110851584. |
[15] |
F. Dorfler and F. Bullo,
On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.
doi: 10.1137/10081530X. |
[16] |
B. Fernandez, D. Grard-Varet and G. Giacomin,
Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.
doi: 10.1007/s00023-015-0450-9. |
[17] |
S. Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys., 69 (2018), 25 pp.
doi: 10.1007/s00033-018-0984-z. |
[18] |
S. Y. Ha, H. K. Kim and J. Park,
Remarks on the complete synchronization for the Kuramoto model with frustrations, Anal. Appl., 16 (2018), 525-563.
doi: 10.1142/S0219530517500130. |
[19] |
S. Y. Ha, H. Kim and S. Ryoo,
Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.
doi: 10.4310/CMS.2016.v14.n4.a10. |
[20] |
S. Y. Ha, Y. Kim and Z. Li,
Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13 (2014), 466-492.
doi: 10.1137/130926559. |
[21] |
S. Y. Ha, Y. Kim and Z. Li,
Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.
doi: 10.3934/nhm.2014.9.33. |
[22] |
S. Y. Ha, Y. H. Kim, J. Morales and J. Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, Phys. D, 401 (2020), 24 pp.
doi: 10.1016/j.physd.2019.132154. |
[23] |
S. Y. Ha, D. Ko and Y. Zhang,
Emergence of Phase-Locking in the Kuramoto Model for Identical Oscillators with Frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.
doi: 10.1137/17M1112959. |
[24] |
S. Y. Ha, J. Lee and Y. Zhang,
Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Quart. Appl. Math., 77 (2019), 631-654.
doi: 10.1090/qam/1533. |
[25] |
S. Y. Ha, H. Park and Y. Zhang,
Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration, Netw. Heterog. Media, 15 (2020), 427-461.
doi: 10.3934/nhm.2020026. |
[26] |
S. Y. Ha and Q. Xiao,
Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.
doi: 10.1016/j.jde.2015.03.038. |
[27] |
S. Y. Ha and Q. Xiao,
Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys., 160 (2015), 477-496.
doi: 10.1007/s10955-015-1270-5. |
[28] |
A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf., 5 (2004), 4296-4301. Google Scholar |
[29] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69689-3. |
[30] |
Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 30 (1975), 420. |
[31] |
C. Lancellotti,
On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys., 34 (2005), 523-535.
doi: 10.1080/00411450508951152. |
[32] |
Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011), 016231. Google Scholar |
[33] |
Z. Li and S. Y. Ha,
Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.
doi: 10.1142/S0218202516400054. |
[34] |
R. E. Mirollo and S. H. Strogatz,
The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347.
doi: 10.1007/s00332-006-0806-x. |
[35] |
J. Morales and D. Poyato, On the trend to global equilibrium for Kuramoto Oscillators, arXiv: 1908.07657v1 Google Scholar |
[36] |
E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008), 68003. Google Scholar |
[37] |
K. Park, S. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shift, Phys. Rev. E, 57 (1998), 5030-5035. Google Scholar |
[38] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743.![]() ![]() |
[39] |
H. Sakaguchi and Y. Kuramoto,
A soluble active rotator model showing phase transitions via mutual entrainment, Progr. Theoret. Phys., 76 (1986), 576-581.
doi: 10.1143/PTP.76.576. |
[40] |
S. H. Strogatz,
From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.
doi: 10.1016/S0167-2789(00)00094-4. |
[41] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42. Google Scholar |
[42] |
A. T. Winfree, The Geometry of Biological Time, Springer, New York, 1980. |
[43] |
Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2001), 703-707. Google Scholar |
show all references
References:
[1] |
J. A. Acebrón, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler,
The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern. Phys., 77 (2005), 137-185.
doi: 10.1103/RevModPhys.77.137. |
[2] |
D. Amadori, S. Y. Ha and J. Park,
On the global well-posedness of BV weak solutions for the Kuramoto-akaguchi equation, J. Differ. Equ., 262 (2017), 978-1022.
doi: 10.1016/j.jde.2016.10.004. |
[3] |
D. Benedetto, E. Caglioti and U. Montemagno,
On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.
doi: 10.4310/CMS.2015.v13.n7.a6. |
[4] |
D. Benedetto, E. Caglioti and U. Montemagno,
Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.
doi: 10.1007/s10955-015-1426-3. |
[5] |
M. Brede and A. C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model, Phys. Rev. E, 93 (2916), 062315, 13 pp.
doi: 10.1103/PhysRevE.93.062315. |
[6] |
J. A. Carrillo, Y. P. Choi, S. Y. Ha, M. J. Kang and Y. Kim,
Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.
doi: 10.1007/s10955-014-1005-z. |
[7] |
Y. Choi, S. Y. Ha, S. Jung and Y. Kim,
Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.
doi: 10.1016/j.physd.2011.11.011. |
[8] |
H. Chiba,
Continuous limit of the moments system for the globally coupled phase oscillators, Discrete Contin. Dyn. Syst., 33 (2013), 1891-1903.
doi: 10.3934/dcds.2013.33.1891. |
[9] |
N. Chopra and M. W. Spong,
On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control, 54 (2009), 353-357.
doi: 10.1109/TAC.2008.2007884. |
[10] |
H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076. Google Scholar |
[11] |
F. De Smet and D. Aeyels,
Partial entrainment in the finite Kuramoto-Sakaguchi model, Physica D, 234 (2007), 81-89.
doi: 10.1016/j.physd.2007.06.025. |
[12] |
H. Dietert, B. Fernandez and D. Gérard-Varet,
Landau damping to partially locked states in the Kuramoto model, Commun. Pure Appl. Math., 71 (2018), 953-993.
doi: 10.1002/cpa.21741. |
[13] |
J. G. Dong and X. Xue,
Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.
doi: 10.4310/CMS.2013.v11.n2.a7. |
[14] |
F. Dörfler and F. Bullo,
Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.
doi: 10.1137/110851584. |
[15] |
F. Dorfler and F. Bullo,
On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.
doi: 10.1137/10081530X. |
[16] |
B. Fernandez, D. Grard-Varet and G. Giacomin,
Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.
doi: 10.1007/s00023-015-0450-9. |
[17] |
S. Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys., 69 (2018), 25 pp.
doi: 10.1007/s00033-018-0984-z. |
[18] |
S. Y. Ha, H. K. Kim and J. Park,
Remarks on the complete synchronization for the Kuramoto model with frustrations, Anal. Appl., 16 (2018), 525-563.
doi: 10.1142/S0219530517500130. |
[19] |
S. Y. Ha, H. Kim and S. Ryoo,
Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.
doi: 10.4310/CMS.2016.v14.n4.a10. |
[20] |
S. Y. Ha, Y. Kim and Z. Li,
Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13 (2014), 466-492.
doi: 10.1137/130926559. |
[21] |
S. Y. Ha, Y. Kim and Z. Li,
Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.
doi: 10.3934/nhm.2014.9.33. |
[22] |
S. Y. Ha, Y. H. Kim, J. Morales and J. Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, Phys. D, 401 (2020), 24 pp.
doi: 10.1016/j.physd.2019.132154. |
[23] |
S. Y. Ha, D. Ko and Y. Zhang,
Emergence of Phase-Locking in the Kuramoto Model for Identical Oscillators with Frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.
doi: 10.1137/17M1112959. |
[24] |
S. Y. Ha, J. Lee and Y. Zhang,
Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Quart. Appl. Math., 77 (2019), 631-654.
doi: 10.1090/qam/1533. |
[25] |
S. Y. Ha, H. Park and Y. Zhang,
Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration, Netw. Heterog. Media, 15 (2020), 427-461.
doi: 10.3934/nhm.2020026. |
[26] |
S. Y. Ha and Q. Xiao,
Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.
doi: 10.1016/j.jde.2015.03.038. |
[27] |
S. Y. Ha and Q. Xiao,
Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys., 160 (2015), 477-496.
doi: 10.1007/s10955-015-1270-5. |
[28] |
A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf., 5 (2004), 4296-4301. Google Scholar |
[29] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69689-3. |
[30] |
Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 30 (1975), 420. |
[31] |
C. Lancellotti,
On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys., 34 (2005), 523-535.
doi: 10.1080/00411450508951152. |
[32] |
Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011), 016231. Google Scholar |
[33] |
Z. Li and S. Y. Ha,
Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.
doi: 10.1142/S0218202516400054. |
[34] |
R. E. Mirollo and S. H. Strogatz,
The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347.
doi: 10.1007/s00332-006-0806-x. |
[35] |
J. Morales and D. Poyato, On the trend to global equilibrium for Kuramoto Oscillators, arXiv: 1908.07657v1 Google Scholar |
[36] |
E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008), 68003. Google Scholar |
[37] |
K. Park, S. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shift, Phys. Rev. E, 57 (1998), 5030-5035. Google Scholar |
[38] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743.![]() ![]() |
[39] |
H. Sakaguchi and Y. Kuramoto,
A soluble active rotator model showing phase transitions via mutual entrainment, Progr. Theoret. Phys., 76 (1986), 576-581.
doi: 10.1143/PTP.76.576. |
[40] |
S. H. Strogatz,
From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.
doi: 10.1016/S0167-2789(00)00094-4. |
[41] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42. Google Scholar |
[42] |
A. T. Winfree, The Geometry of Biological Time, Springer, New York, 1980. |
[43] |
Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2001), 703-707. Google Scholar |
[1] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[2] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[3] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[4] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[5] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[6] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[7] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[8] |
Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491 |
[9] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[10] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[11] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[12] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[13] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[14] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[15] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[16] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[17] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[18] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[19] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[20] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]