• Previous Article
    Uniform regularity and vanishing viscosity limit for the incompressible non-resistive MHD system with transverse magnetic field
  • CPAA Home
  • This Issue
  • Next Article
    Multiplicity and concentration of positive solutions to the fractional Kirchhoff type problems involving sign-changing weight functions
doi: 10.3934/cpaa.2021013

Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826 and Korea Institute for Advanced Study, Hoegiro 87, Seoul, 130-722, Republic of Korea

2. 

Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742, USA

3. 

Stochastic Analysis and Application Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

* Corresponding author

Dedicated to the celebration of the 80th birthday of Prof. Shuxing Chen

Received  June 2020 Revised  December 2020 Published  February 2021

Fund Project: The work of S. Y. Ha was supported by National Research Foundation of Korea(NRF-2020R1A2C3A01003881), and the work of Y. Zhang was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2019R1A5A1028324)

We study phase concentration for the Kuramoto-Sakaguchi(K-S) equation with frustration via detailed estimates on the dynamics of order parameters. The Kuramoto order parameters measure the overall degree of phase concentrations. When the coupling strength is sufficiently large and the size of frustration parameter is sufficiently small, we show that the amplitude order parameter has a positive lower bound uniformly in time, and we also show that the total mass concentrates on the translated phase order parameter by a frustration parameter asymptotically, whereas the mass in the region around the antipodal point decays to zero exponentially fast.

Citation: Seung-Yeal Ha, Javier Morales, Yinglong Zhang. Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021013
References:
[1]

J. A. AcebrónL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

D. AmadoriS. Y. Ha and J. Park, On the global well-posedness of BV weak solutions for the Kuramoto-akaguchi equation, J. Differ. Equ., 262 (2017), 978-1022.  doi: 10.1016/j.jde.2016.10.004.  Google Scholar

[3]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.  Google Scholar

[4]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.  doi: 10.1007/s10955-015-1426-3.  Google Scholar

[5]

M. Brede and A. C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model, Phys. Rev. E, 93 (2916), 062315, 13 pp. doi: 10.1103/PhysRevE.93.062315.  Google Scholar

[6]

J. A. CarrilloY. P. ChoiS. Y. HaM. J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.  doi: 10.1007/s10955-014-1005-z.  Google Scholar

[7]

Y. ChoiS. Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[8]

H. Chiba, Continuous limit of the moments system for the globally coupled phase oscillators, Discrete Contin. Dyn. Syst., 33 (2013), 1891-1903.  doi: 10.3934/dcds.2013.33.1891.  Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[10]

H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076.   Google Scholar

[11]

F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Physica D, 234 (2007), 81-89.  doi: 10.1016/j.physd.2007.06.025.  Google Scholar

[12]

H. DietertB. Fernandez and D. Gérard-Varet, Landau damping to partially locked states in the Kuramoto model, Commun. Pure Appl. Math., 71 (2018), 953-993.  doi: 10.1002/cpa.21741.  Google Scholar

[13]

J. G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[14]

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.  doi: 10.1137/110851584.  Google Scholar

[15]

F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[16]

B. FernandezD. Grard-Varet and G. Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.  doi: 10.1007/s00023-015-0450-9.  Google Scholar

[17]

S. Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys., 69 (2018), 25 pp. doi: 10.1007/s00033-018-0984-z.  Google Scholar

[18]

S. Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization for the Kuramoto model with frustrations, Anal. Appl., 16 (2018), 525-563.  doi: 10.1142/S0219530517500130.  Google Scholar

[19]

S. Y. HaH. Kim and S. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[20]

S. Y. HaY. Kim and Z. Li, Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13 (2014), 466-492.  doi: 10.1137/130926559.  Google Scholar

[21]

S. Y. HaY. Kim and Z. Li, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.  doi: 10.3934/nhm.2014.9.33.  Google Scholar

[22]

S. Y. Ha, Y. H. Kim, J. Morales and J. Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, Phys. D, 401 (2020), 24 pp. doi: 10.1016/j.physd.2019.132154.  Google Scholar

[23]

S. Y. HaD. Ko and Y. Zhang, Emergence of Phase-Locking in the Kuramoto Model for Identical Oscillators with Frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.  doi: 10.1137/17M1112959.  Google Scholar

[24]

S. Y. HaJ. Lee and Y. Zhang, Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Quart. Appl. Math., 77 (2019), 631-654.  doi: 10.1090/qam/1533.  Google Scholar

[25]

S. Y. HaH. Park and Y. Zhang, Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration, Netw. Heterog. Media, 15 (2020), 427-461.  doi: 10.3934/nhm.2020026.  Google Scholar

[26]

S. Y. Ha and Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.  doi: 10.1016/j.jde.2015.03.038.  Google Scholar

[27]

S. Y. Ha and Q. Xiao, Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys., 160 (2015), 477-496.  doi: 10.1007/s10955-015-1270-5.  Google Scholar

[28]

A. JadbabaieN. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf., 5 (2004), 4296-4301.   Google Scholar

[29]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[30]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 30 (1975), 420.  Google Scholar

[31]

C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys., 34 (2005), 523-535.  doi: 10.1080/00411450508951152.  Google Scholar

[32]

Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011), 016231. Google Scholar

[33]

Z. Li and S. Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.  doi: 10.1142/S0218202516400054.  Google Scholar

[34]

R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347.  doi: 10.1007/s00332-006-0806-x.  Google Scholar

[35]

J. Morales and D. Poyato, On the trend to global equilibrium for Kuramoto Oscillators, arXiv: 1908.07657v1 Google Scholar

[36]

E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008), 68003. Google Scholar

[37]

K. ParkS. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shift, Phys. Rev. E, 57 (1998), 5030-5035.   Google Scholar

[38] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[39]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entrainment, Progr. Theoret. Phys., 76 (1986), 576-581.  doi: 10.1143/PTP.76.576.  Google Scholar

[40]

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[41]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

[42]

A. T. Winfree, The Geometry of Biological Time, Springer, New York, 1980.  Google Scholar

[43]

Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2001), 703-707.   Google Scholar

show all references

References:
[1]

J. A. AcebrónL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

D. AmadoriS. Y. Ha and J. Park, On the global well-posedness of BV weak solutions for the Kuramoto-akaguchi equation, J. Differ. Equ., 262 (2017), 978-1022.  doi: 10.1016/j.jde.2016.10.004.  Google Scholar

[3]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.  Google Scholar

[4]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.  doi: 10.1007/s10955-015-1426-3.  Google Scholar

[5]

M. Brede and A. C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model, Phys. Rev. E, 93 (2916), 062315, 13 pp. doi: 10.1103/PhysRevE.93.062315.  Google Scholar

[6]

J. A. CarrilloY. P. ChoiS. Y. HaM. J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.  doi: 10.1007/s10955-014-1005-z.  Google Scholar

[7]

Y. ChoiS. Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[8]

H. Chiba, Continuous limit of the moments system for the globally coupled phase oscillators, Discrete Contin. Dyn. Syst., 33 (2013), 1891-1903.  doi: 10.3934/dcds.2013.33.1891.  Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[10]

H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076.   Google Scholar

[11]

F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Physica D, 234 (2007), 81-89.  doi: 10.1016/j.physd.2007.06.025.  Google Scholar

[12]

H. DietertB. Fernandez and D. Gérard-Varet, Landau damping to partially locked states in the Kuramoto model, Commun. Pure Appl. Math., 71 (2018), 953-993.  doi: 10.1002/cpa.21741.  Google Scholar

[13]

J. G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[14]

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.  doi: 10.1137/110851584.  Google Scholar

[15]

F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[16]

B. FernandezD. Grard-Varet and G. Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.  doi: 10.1007/s00023-015-0450-9.  Google Scholar

[17]

S. Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys., 69 (2018), 25 pp. doi: 10.1007/s00033-018-0984-z.  Google Scholar

[18]

S. Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization for the Kuramoto model with frustrations, Anal. Appl., 16 (2018), 525-563.  doi: 10.1142/S0219530517500130.  Google Scholar

[19]

S. Y. HaH. Kim and S. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[20]

S. Y. HaY. Kim and Z. Li, Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13 (2014), 466-492.  doi: 10.1137/130926559.  Google Scholar

[21]

S. Y. HaY. Kim and Z. Li, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.  doi: 10.3934/nhm.2014.9.33.  Google Scholar

[22]

S. Y. Ha, Y. H. Kim, J. Morales and J. Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, Phys. D, 401 (2020), 24 pp. doi: 10.1016/j.physd.2019.132154.  Google Scholar

[23]

S. Y. HaD. Ko and Y. Zhang, Emergence of Phase-Locking in the Kuramoto Model for Identical Oscillators with Frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.  doi: 10.1137/17M1112959.  Google Scholar

[24]

S. Y. HaJ. Lee and Y. Zhang, Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Quart. Appl. Math., 77 (2019), 631-654.  doi: 10.1090/qam/1533.  Google Scholar

[25]

S. Y. HaH. Park and Y. Zhang, Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration, Netw. Heterog. Media, 15 (2020), 427-461.  doi: 10.3934/nhm.2020026.  Google Scholar

[26]

S. Y. Ha and Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.  doi: 10.1016/j.jde.2015.03.038.  Google Scholar

[27]

S. Y. Ha and Q. Xiao, Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys., 160 (2015), 477-496.  doi: 10.1007/s10955-015-1270-5.  Google Scholar

[28]

A. JadbabaieN. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf., 5 (2004), 4296-4301.   Google Scholar

[29]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[30]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 30 (1975), 420.  Google Scholar

[31]

C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys., 34 (2005), 523-535.  doi: 10.1080/00411450508951152.  Google Scholar

[32]

Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011), 016231. Google Scholar

[33]

Z. Li and S. Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.  doi: 10.1142/S0218202516400054.  Google Scholar

[34]

R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347.  doi: 10.1007/s00332-006-0806-x.  Google Scholar

[35]

J. Morales and D. Poyato, On the trend to global equilibrium for Kuramoto Oscillators, arXiv: 1908.07657v1 Google Scholar

[36]

E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008), 68003. Google Scholar

[37]

K. ParkS. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shift, Phys. Rev. E, 57 (1998), 5030-5035.   Google Scholar

[38] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[39]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entrainment, Progr. Theoret. Phys., 76 (1986), 576-581.  doi: 10.1143/PTP.76.576.  Google Scholar

[40]

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[41]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

[42]

A. T. Winfree, The Geometry of Biological Time, Springer, New York, 1980.  Google Scholar

[43]

Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2001), 703-707.   Google Scholar

[1]

Xiaoxue Zhao, Zhuchun Li. Synchronization of a Kuramoto-like model for power grids with frustration. Networks & Heterogeneous Media, 2020, 15 (3) : 543-553. doi: 10.3934/nhm.2020030

[2]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks & Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[3]

Young-Pil Choi, Seung-Yeal Ha, Javier Morales. Emergent dynamics of the Kuramoto ensemble under the effect of inertia. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4875-4913. doi: 10.3934/dcds.2018213

[4]

Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks & Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787

[5]

Woojoo Shim. On the generic complete synchronization of the discrete Kuramoto model. Kinetic & Related Models, 2020, 13 (5) : 979-1005. doi: 10.3934/krm.2020034

[6]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105

[7]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[8]

Seung-Yeal Ha, Hansol Park, Yinglong Zhang. Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks & Heterogeneous Media, 2020, 15 (3) : 427-461. doi: 10.3934/nhm.2020026

[9]

Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li. Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks & Heterogeneous Media, 2017, 12 (1) : 1-24. doi: 10.3934/nhm.2017001

[10]

Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322

[11]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

[12]

Seung-Yeal Ha, Hansol Park. Emergent behaviors of the generalized Lohe matrix model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4227-4261. doi: 10.3934/dcdsb.2020286

[13]

Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic & Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007

[14]

James Walsh, Esther Widiasih. A dynamics approach to a low-order climate model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 257-279. doi: 10.3934/dcdsb.2014.19.257

[15]

Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043

[16]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[17]

Guoliang Cai, Lan Yao, Pei Hu, Xiulei Fang. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2019-2028. doi: 10.3934/dcdsb.2013.18.2019

[18]

Henk Broer, Henk Dijkstra, Carles Simó, Alef Sterk, Renato Vitolo. The dynamics of a low-order model for the Atlantic multidecadal oscillation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 73-107. doi: 10.3934/dcdsb.2011.16.73

[19]

Simone Fiori. Synchronization of first-order autonomous oscillators on Riemannian manifolds. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1725-1741. doi: 10.3934/dcdsb.2018233

[20]

Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen. Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 93-115. doi: 10.3934/mbe.2009.6.93

2019 Impact Factor: 1.105

Article outline

[Back to Top]