
-
Previous Article
Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation
- CPAA Home
- This Issue
-
Next Article
The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space
Global solutions of a two-dimensional Riemann problem for the pressure gradient system
1. | Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK, School of Mathematical Sciences, Fudan University, Shanghai 200433, China, AMSS, Chinese Academy of Sciences, Beijing 100190, China |
2. | Department of Mathematics, Yunnan University, Kunming 650091, China |
3. | School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK |
We are concerned with a two-dimensional Riemann problem for the pressure gradient system that is a hyperbolic system of conservation laws. The Riemann initial data consist of four constant states in four sectorial regions such that two shocks and two vortex sheets are generated between the adjacent states. The solutions keep the four constant states and four planar waves outside the outer sonic circle in the self-similar coordinates, while the two shocks keep planar until meeting the outer sonic circle at two different points and then generate a diffracted shock to connect these points, whose location is apriori unknown. Then the problem can be formulated as a free boundary problem, in which the diffracted transonic shock is the one-phase free boundary to connect the two points, while the other part of the sonic circle forms a fixed boundary. We establish the global existence of a solution and the optimal Lipschitz regularity of both the diffracted shock across the two points and the solution across the outer sonic boundary. Then this Riemann problem is solved globally, whose solution contains two vortex sheets and one global shock containing the two originally separated shocks generated by the Riemann data.
References:
[1] |
R. Agarwal and D. Halt, A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows, In: Frontiers of Computational Fluid Dynamics, pp.155–163, 1994. Google Scholar |
[2] |
M. Bae, G. Q. Chen and M. Feldman,
Regularity of solutions to regular shock reflection for potential flow, Invent. Math., 175 (2009), 505-543.
doi: 10.1007/s00222-008-0156-4. |
[3] |
M. Bae, G. Q. Chen and M. Feldman, Prandtl-Meyer Reflection Configurations, Transonic Shocks, and Free Boundary Problems, Memoirs Amer. Math. Soc. (to appear); arXiv: 1901.05916, 2020. Google Scholar |
[4] |
S. Canic, B. L. Keyfitz and E. H. Kim,
Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection, Methods Appl. Anal., 7 (2000), 313-336.
doi: 10.4310/MAA.2000.v7.n2.a4. |
[5] |
S. Canic, B. L. Keyfitz and E. H. Kim,
A free boundary problem for a quasi-linear degenerate elliptic equation: regular reflection of weak shocks, Commun. Pure Appl. Math., 55 (2002), 71-92.
doi: 10.1002/cpa.10013. |
[6] |
S. Canic, B. L. Keyfitz and E. H. Kim,
Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks, SIAM J. Math. Anal., 37 (2006), 1947-1977.
doi: 10.1137/S003614100342989X. |
[7] |
T. Chang, G. Q. Chen and S. L. Yang,
On the $2$-D Riemann problem for the compressible Euler equations. I. Interaction of shocks and rarefaction waves, Discrete Contin. Dynam. Systems, 1 (1995), 555-584.
doi: 10.3934/dcds.1995.1.555. |
[8] |
T. Chang, G. Q. Chen and S. L. Yang, On the $2$-D Riemann problem for the compressible Euler equations., Ⅱ. Interaction of contact discontinuities
doi: 10.3934/dcds.2000.6.419. |
[9] |
T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Longman Scientific & Technical: Harlow; John Wiley & Sons, Inc., New York, 1989. |
[10] |
G. Q. Chen, X. Deng and W. Xiang,
Shock diffraction by convex cornered wedges for the nonlinear wave system, Arch. Ration. Mech. Anal., 211 (2014), 61-112.
doi: 10.1007/s00205-013-0681-1. |
[11] |
G. Q. Chen and M. Feldman,
Global solutions of shock reflection by large-angle wedges for potential flow, Ann. Math., 171 (2010), 1067-1182.
doi: 10.4007/annals.2010.171.1067. |
[12] |
G. Q. Chen and M. Feldman, The Mathematics of Shock Reflection-Diffraction and Von Neumann's Conjectures, Princeton University Press, Princeton, 2018.
![]() |
[13] |
G. Q. Chen and P. LeFloch,
Entropy flux-splittings for hyperbolic conservation laws, Commun. Pure Appl. Math., 48 (1995), 691-729.
doi: 10.1002/cpa.3160480703. |
[14] |
S. X. Chen,
Multidimensional Riemann problem for semilinear wave equations, Commun. Partial Differ. Equ., 17 (1992), 715-736.
doi: 10.1080/03605309208820861. |
[15] |
S. X. Chen,
Construction of solutions to M-D Riemann problems for a $2\times 2$ quasilinear hyperbolic system, Chinese Ann. Math., 18B (1997), 345-358.
|
[16] |
S. X. Chen and B. Fang,
Stability of transonic shocks in supersonic flow past a wedge, J. Differ. Equ., 233 (2007), 105-135.
doi: 10.1016/j.jde.2006.09.020. |
[17] |
S. X. Chen and A. Qu,
Two-dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal., 44 (2012), 2146-2178.
doi: 10.1137/110838091. |
[18] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016.
doi: 10.1007/978-3-662-49451-6. |
[19] |
J. V. Egorov and V. A. Kondrat'ev, The oblique derivative problem, Mathematics of the USSR-Sbornik, 7 (1969), 139 pp. |
[20] |
V. Elling and T. P. Liu,
Supersonic flow onto a solid wedge, Commun. Pure Appl. Math., 61 (2008), 1347-1448.
doi: 10.1002/cpa.20231. |
[21] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[22] |
J. Glimm,
Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697-715.
doi: 10.1002/cpa.3160180408. |
[23] |
L. Hörmander,
Pseudo-differential operators and non-elliptic boundary problems, Ann. Math., 83 (1966), 129-209.
doi: 10.2307/1970473. |
[24] |
B. L. Keyfitz and S. Canic,
Riemann problems for the two-dimensional unsteady transonic small disturbance equation, SIAM J. Appl. Math., 58 (1998), 636-665.
doi: 10.1137/S0036139996300. |
[25] |
E. H. Kim,
A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation, J. Differ. Equ., 248 (2010), 2906-2930.
doi: 10.1016/j.jde.2010.02.021. |
[26] |
P. Lax,
Hyperbolic systems of conservation laws Ⅱ, Commun. Pure Appl. Math., 4 (1957), 537-566.
doi: 10.1002/cpa.3160100406. |
[27] |
J. Li, T. Zhang, and S. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Monographs and Surveys in Pure and Applied Mathematics, Vol. 98, Chapman & Hall/CRC, Longman, Harlow, 1998. |
[28] |
Y. F. Li and Y. M. Cao,
Large-particle difference method with second-order accuracy in gasdynamics, Sci. China, 28A (1985), 1024-1035.
|
[29] |
G. M. Lieberman,
The Perron process applied to oblique derivative problems, Adv. Math., 55 (1985), 161-172.
doi: 10.1016/0001-8708(85)90019-2. |
[30] |
G. M. Lieberman,
Mixed boundary value problems for elliptic and parabolic differential equations of second order, J. Math. Anal. Appl., 113 (1986), 422-440.
doi: 10.1016/0022-247X(86)90314-8. |
[31] |
P. R. Popivanov and D. K. Palagachev, The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations, Akademie Verlag, Berlin, 1997. |
[32] |
B. Riemann, Über die Fortpflanzung ebener Luftvellen von endlicher Schwingungsweite, Gött. Abh. Math. Cl., 8 (1860), 43-65. Google Scholar |
[33] |
J. Smoller., The Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[34] |
B. Winzell,
A boundary value problem with an oblique derivative, Commun. Partial Differ. Equ., 6 (1981), 305-328.
doi: 10.1080/03605308108820179. |
[35] |
H. Yuan,
On transonic shocks in two-dimensional variable-area ducts for steady Euler system, SIAM J. Math. Anal., 38 (2006), 1343-1370.
doi: 10.1137/050642447. |
[36] |
P. Zhang, J. Li and T. Zhang,
On two-dimensional Riemann problem for pressure-gradient equations of the Euler system, Discret. Contin. Dyn. Syst., 4 (1998), 609-634.
doi: 10.3934/dcds.1998.4.609. |
[37] |
Y. Zheng,
Existence of solutions to the transonic pressure gradient equations of the compressible Euler equations in elliptic regions, Commun. Partial Differ. Equ., 22 (1997), 1849-1868.
doi: 10.1080/03605309708821323. |
[38] |
Y. Zheng,
A global solution to a two-dimensional Riemann problem involving shocks as free boundaries, Acta Math. Appl. Sin., 19 (2003), 559-572.
doi: 10.1007/210255-003-0131-1. |
[39] |
Y. Zheng,
Two-dimensional regular shock reflection for the pressure gradient system of conservation laws, Acta Math. Appl. Sin., 22 (2006), 177-210.
doi: 10.1007/s10255-006-0296-5. |
[40] |
Y. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4612-0141-0. |
show all references
References:
[1] |
R. Agarwal and D. Halt, A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows, In: Frontiers of Computational Fluid Dynamics, pp.155–163, 1994. Google Scholar |
[2] |
M. Bae, G. Q. Chen and M. Feldman,
Regularity of solutions to regular shock reflection for potential flow, Invent. Math., 175 (2009), 505-543.
doi: 10.1007/s00222-008-0156-4. |
[3] |
M. Bae, G. Q. Chen and M. Feldman, Prandtl-Meyer Reflection Configurations, Transonic Shocks, and Free Boundary Problems, Memoirs Amer. Math. Soc. (to appear); arXiv: 1901.05916, 2020. Google Scholar |
[4] |
S. Canic, B. L. Keyfitz and E. H. Kim,
Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection, Methods Appl. Anal., 7 (2000), 313-336.
doi: 10.4310/MAA.2000.v7.n2.a4. |
[5] |
S. Canic, B. L. Keyfitz and E. H. Kim,
A free boundary problem for a quasi-linear degenerate elliptic equation: regular reflection of weak shocks, Commun. Pure Appl. Math., 55 (2002), 71-92.
doi: 10.1002/cpa.10013. |
[6] |
S. Canic, B. L. Keyfitz and E. H. Kim,
Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks, SIAM J. Math. Anal., 37 (2006), 1947-1977.
doi: 10.1137/S003614100342989X. |
[7] |
T. Chang, G. Q. Chen and S. L. Yang,
On the $2$-D Riemann problem for the compressible Euler equations. I. Interaction of shocks and rarefaction waves, Discrete Contin. Dynam. Systems, 1 (1995), 555-584.
doi: 10.3934/dcds.1995.1.555. |
[8] |
T. Chang, G. Q. Chen and S. L. Yang, On the $2$-D Riemann problem for the compressible Euler equations., Ⅱ. Interaction of contact discontinuities
doi: 10.3934/dcds.2000.6.419. |
[9] |
T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Longman Scientific & Technical: Harlow; John Wiley & Sons, Inc., New York, 1989. |
[10] |
G. Q. Chen, X. Deng and W. Xiang,
Shock diffraction by convex cornered wedges for the nonlinear wave system, Arch. Ration. Mech. Anal., 211 (2014), 61-112.
doi: 10.1007/s00205-013-0681-1. |
[11] |
G. Q. Chen and M. Feldman,
Global solutions of shock reflection by large-angle wedges for potential flow, Ann. Math., 171 (2010), 1067-1182.
doi: 10.4007/annals.2010.171.1067. |
[12] |
G. Q. Chen and M. Feldman, The Mathematics of Shock Reflection-Diffraction and Von Neumann's Conjectures, Princeton University Press, Princeton, 2018.
![]() |
[13] |
G. Q. Chen and P. LeFloch,
Entropy flux-splittings for hyperbolic conservation laws, Commun. Pure Appl. Math., 48 (1995), 691-729.
doi: 10.1002/cpa.3160480703. |
[14] |
S. X. Chen,
Multidimensional Riemann problem for semilinear wave equations, Commun. Partial Differ. Equ., 17 (1992), 715-736.
doi: 10.1080/03605309208820861. |
[15] |
S. X. Chen,
Construction of solutions to M-D Riemann problems for a $2\times 2$ quasilinear hyperbolic system, Chinese Ann. Math., 18B (1997), 345-358.
|
[16] |
S. X. Chen and B. Fang,
Stability of transonic shocks in supersonic flow past a wedge, J. Differ. Equ., 233 (2007), 105-135.
doi: 10.1016/j.jde.2006.09.020. |
[17] |
S. X. Chen and A. Qu,
Two-dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal., 44 (2012), 2146-2178.
doi: 10.1137/110838091. |
[18] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016.
doi: 10.1007/978-3-662-49451-6. |
[19] |
J. V. Egorov and V. A. Kondrat'ev, The oblique derivative problem, Mathematics of the USSR-Sbornik, 7 (1969), 139 pp. |
[20] |
V. Elling and T. P. Liu,
Supersonic flow onto a solid wedge, Commun. Pure Appl. Math., 61 (2008), 1347-1448.
doi: 10.1002/cpa.20231. |
[21] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[22] |
J. Glimm,
Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697-715.
doi: 10.1002/cpa.3160180408. |
[23] |
L. Hörmander,
Pseudo-differential operators and non-elliptic boundary problems, Ann. Math., 83 (1966), 129-209.
doi: 10.2307/1970473. |
[24] |
B. L. Keyfitz and S. Canic,
Riemann problems for the two-dimensional unsteady transonic small disturbance equation, SIAM J. Appl. Math., 58 (1998), 636-665.
doi: 10.1137/S0036139996300. |
[25] |
E. H. Kim,
A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation, J. Differ. Equ., 248 (2010), 2906-2930.
doi: 10.1016/j.jde.2010.02.021. |
[26] |
P. Lax,
Hyperbolic systems of conservation laws Ⅱ, Commun. Pure Appl. Math., 4 (1957), 537-566.
doi: 10.1002/cpa.3160100406. |
[27] |
J. Li, T. Zhang, and S. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Monographs and Surveys in Pure and Applied Mathematics, Vol. 98, Chapman & Hall/CRC, Longman, Harlow, 1998. |
[28] |
Y. F. Li and Y. M. Cao,
Large-particle difference method with second-order accuracy in gasdynamics, Sci. China, 28A (1985), 1024-1035.
|
[29] |
G. M. Lieberman,
The Perron process applied to oblique derivative problems, Adv. Math., 55 (1985), 161-172.
doi: 10.1016/0001-8708(85)90019-2. |
[30] |
G. M. Lieberman,
Mixed boundary value problems for elliptic and parabolic differential equations of second order, J. Math. Anal. Appl., 113 (1986), 422-440.
doi: 10.1016/0022-247X(86)90314-8. |
[31] |
P. R. Popivanov and D. K. Palagachev, The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations, Akademie Verlag, Berlin, 1997. |
[32] |
B. Riemann, Über die Fortpflanzung ebener Luftvellen von endlicher Schwingungsweite, Gött. Abh. Math. Cl., 8 (1860), 43-65. Google Scholar |
[33] |
J. Smoller., The Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[34] |
B. Winzell,
A boundary value problem with an oblique derivative, Commun. Partial Differ. Equ., 6 (1981), 305-328.
doi: 10.1080/03605308108820179. |
[35] |
H. Yuan,
On transonic shocks in two-dimensional variable-area ducts for steady Euler system, SIAM J. Math. Anal., 38 (2006), 1343-1370.
doi: 10.1137/050642447. |
[36] |
P. Zhang, J. Li and T. Zhang,
On two-dimensional Riemann problem for pressure-gradient equations of the Euler system, Discret. Contin. Dyn. Syst., 4 (1998), 609-634.
doi: 10.3934/dcds.1998.4.609. |
[37] |
Y. Zheng,
Existence of solutions to the transonic pressure gradient equations of the compressible Euler equations in elliptic regions, Commun. Partial Differ. Equ., 22 (1997), 1849-1868.
doi: 10.1080/03605309708821323. |
[38] |
Y. Zheng,
A global solution to a two-dimensional Riemann problem involving shocks as free boundaries, Acta Math. Appl. Sin., 19 (2003), 559-572.
doi: 10.1007/210255-003-0131-1. |
[39] |
Y. Zheng,
Two-dimensional regular shock reflection for the pressure gradient system of conservation laws, Acta Math. Appl. Sin., 22 (2006), 177-210.
doi: 10.1007/s10255-006-0296-5. |
[40] |
Y. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4612-0141-0. |




[1] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[2] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[3] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[4] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[5] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[6] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[7] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[8] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[9] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[10] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[11] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[12] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[13] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[14] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[15] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[16] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[17] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[18] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[19] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[20] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
2019 Impact Factor: 1.105
Tools
Article outline
Figures and Tables
[Back to Top]