• Previous Article
    Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies
  • CPAA Home
  • This Issue
  • Next Article
    Collective behaviors of the Lohe Hermitian sphere model with inertia
July & August  2021, 20(7&8): 2643-2663. doi: 10.3934/cpaa.2021015

On a supersonic-sonic patch arising from the frankl problem in transonic flows

1. 

Department of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China

2. 

Laboratory of Computational Physics, Institute of Applied Physics, and Computational Mathematics, Beijing, 100088, China

3. 

Center for Applied Physics and Technology, Peking University, 100871, China

* Corresponding author

Dedicated to the celebration of the 80th birthday of Professor Shuxing Chen

Received  September 2020 Revised  December 2020 Published  July & August 2021 Early access  February 2021

Fund Project: The first author is supported by the Zhejiang Provincial Natural Science Foundation (No. LY21A010017). The second author is supported by the Natural Science Foundation of China (Nos: 11771054, 91852207, 12072042), National Key Project(GJXM92579) and Foundation of LCP

We construct a supersonic-sonic smooth patch solution for the two dimensional steady Euler equations in gas dynamics. This patch is extracted from the Frankl problem in the study of transonic flow with local supersonic bubble over an airfoil. Based on the methodology of characteristic decompositions, we establish the global existence and regularity of solutions in a partial hodograph coordinate system in terms of angle variables. The original problem is solved by transforming the solution in the partial hodograph plane back to that in the physical plane. Moreover, the uniform regularity of the solution and the regularity of an associated sonic curve are also verified.

Citation: Yanbo Hu, Jiequan Li. On a supersonic-sonic patch arising from the frankl problem in transonic flows. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2643-2663. doi: 10.3934/cpaa.2021015
References:
[1]

J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator, Ⅰ, Ⅱ, Ⅲ, Duke Math. J., 98 (1999), 465–483; 111 (2002), 561–584; 128 (2005), 119–140. doi: 10.1215/S0012-7094-02-11137-5.

[2]

L. Bers, On the continuation of a potential gas flow across the sonic line, Tech. Notes Nat. Adv. Comm. Aeronaut., No. 2058, 1950.

[3]

G. Q. ChenC. DafermosM. Slemrod and D. H. Wang, On two-dimensional sonic-subsonic flow, Commun. Math. Phys., 271 (2007), 635-637.  doi: 10.1007/s00220-007-0211-9.

[4]

G. Q. ChenF. M. Huang and T. Wang, Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.  doi: 10.1007/s00205-015-0905-7.

[5]

S. X. Chen, Generalized Tricomi problem for a quasilinear mixed type equation, Chin. Ann. Math. Ser. B, 30 (2009), 527-538.  doi: 10.1007/s11401-009-0215-1.

[6]

S. X. Chen, The fundamental solution of the Keldysh type operator, Sci. China Ser. A, 52 (2009), 1829-1843.  doi: 10.1007/s11425-009-0069-8.

[7]

S. X. Chen, Tricomi problem for a mixed equation of second order with discontinuous coefficients, Acta Math. Sci. Ser. B, 29 (2009), 569-582.  doi: 10.1016/S0252-9602(09)60054-0.

[8]

S. X. Chen, Mixed type equations in gas dynamics, Quart. Appl. Math., 68 (2010), 487-511.  doi: 10.1090/S0033-569X-2010-01164-9.

[9]

S. X. Chen, A mixed equation of Tricomi-Keldysh type, J. Hyperbolic Differ. Equ., 9 (2012), 545-553.  doi: 10.1142/S0219891612500178.

[10]

J. Cole and L. Cook, Transonic Aerodynamics, North-Holland Series in Applied Mathematics and Mechanics, Elsevier, Amsterdam, 1986.

[11]

L. Cook, A uniqueness proof for a transonic flow problem, Indiana Univ. Math. J., 27 (1978), 51-71.  doi: 10.1512/iumj.1978.27.27005.

[12]

R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948.

[13]

F. Frankl, On the formation of shock waves in subsonic flows with local supersonic velocities, Prikl. Mat. Mech., 11 (1947), 199-202. 

[14]

Y. B. Hu and J. Q. Li, Sonic-supersonic solutions for the two-dimensional steady full Euler equations, Arch. Ration. Mech. Anal., 235 (2020), 1819-1871.  doi: 10.1007/s00205-019-01454-w.

[15]

Y. B. Hu and J. Q. Li, On a global supersonic-sonic patch characterized by 2-D steady full Euler equations, Adv. Differ. Equ., 25 (2020), 213-254. 

[16]

A. Kuz'min, Solvability of a problem for transonic flow with a local supersonic region, Nonlinear Differ. Equ. Appl., 8 (2001), 299-321.  doi: 10.1007/PL00001450.

[17]

A. Kuz'min, Boundary Value Problems for Transonic Flow, John Wiley and Sons, 2002.

[18]

A. Kuz'min, A modified Frankl-Morawetz problem on a transonic flow past an airfoil, Differ. Equ., 40 (2004), 1455-1460.  doi: 10.1007/s10625-005-0077-6.

[19]

J. Q. LiZ. C. Yang and Y. X. Zheng, Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations, J. Differ. Equ., 250 (2011), 782-798.  doi: 10.1016/j.jde.2010.07.009.

[20]

J. Q. Li and Y. X. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Ration. Mech. Anal., 193 (2009), 623-657.  doi: 10.1007/s00205-008-0140-6.

[21]

M. J. Li and Y. X. Zheng, Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 201 (2011), 1069-1096.  doi: 10.1007/s00205-011-0410-6.

[22]

C. Morawetz, A uniqueness theorem for Frankl's problem, Commun. Pure Appl. Math., 7 (1954), 697-703.  doi: 10.1002/cpa.3160070406.

[23]

C. Morawetz, On the non-existence of continuous transonic flow past profiles Ⅰ, Ⅱ, Commun. Pure Appl. Math., 9 (1956), 45–68; 10 (1957), 107–131. doi: 10.1002/cpa.3160100105.

[24]

C. Morawetz, On a weak solution for a transonic flow problem, Commun. Pure Appl. Math., 38 (1985), 797-817.  doi: 10.1002/cpa.3160380610.

[25]

K. SongQ. Wang and Y. X. Zheng, The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219.  doi: 10.1137/140964382.

[26]

R. Vaglio-Laurin, Transonic rotational flow over a convex corner, J. Fluid Mech., 9 (1960), 81-103.  doi: 10.1017/S0022112060000931.

[27]

C. P. Wang and Z. P. Xin, Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232 (2019), 1597-1647.  doi: 10.1007/s00205-018-01350-9.

[28]

C. J. Xie and Z. P. Xin, Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., 56 (2007), 2991-3023.  doi: 10.1512/iumj.2007.56.3108.

[29]

T. Y. Zhang and Y. X. Zheng, Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.  doi: 10.1512/iumj.2014.63.5434.

show all references

References:
[1]

J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator, Ⅰ, Ⅱ, Ⅲ, Duke Math. J., 98 (1999), 465–483; 111 (2002), 561–584; 128 (2005), 119–140. doi: 10.1215/S0012-7094-02-11137-5.

[2]

L. Bers, On the continuation of a potential gas flow across the sonic line, Tech. Notes Nat. Adv. Comm. Aeronaut., No. 2058, 1950.

[3]

G. Q. ChenC. DafermosM. Slemrod and D. H. Wang, On two-dimensional sonic-subsonic flow, Commun. Math. Phys., 271 (2007), 635-637.  doi: 10.1007/s00220-007-0211-9.

[4]

G. Q. ChenF. M. Huang and T. Wang, Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.  doi: 10.1007/s00205-015-0905-7.

[5]

S. X. Chen, Generalized Tricomi problem for a quasilinear mixed type equation, Chin. Ann. Math. Ser. B, 30 (2009), 527-538.  doi: 10.1007/s11401-009-0215-1.

[6]

S. X. Chen, The fundamental solution of the Keldysh type operator, Sci. China Ser. A, 52 (2009), 1829-1843.  doi: 10.1007/s11425-009-0069-8.

[7]

S. X. Chen, Tricomi problem for a mixed equation of second order with discontinuous coefficients, Acta Math. Sci. Ser. B, 29 (2009), 569-582.  doi: 10.1016/S0252-9602(09)60054-0.

[8]

S. X. Chen, Mixed type equations in gas dynamics, Quart. Appl. Math., 68 (2010), 487-511.  doi: 10.1090/S0033-569X-2010-01164-9.

[9]

S. X. Chen, A mixed equation of Tricomi-Keldysh type, J. Hyperbolic Differ. Equ., 9 (2012), 545-553.  doi: 10.1142/S0219891612500178.

[10]

J. Cole and L. Cook, Transonic Aerodynamics, North-Holland Series in Applied Mathematics and Mechanics, Elsevier, Amsterdam, 1986.

[11]

L. Cook, A uniqueness proof for a transonic flow problem, Indiana Univ. Math. J., 27 (1978), 51-71.  doi: 10.1512/iumj.1978.27.27005.

[12]

R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948.

[13]

F. Frankl, On the formation of shock waves in subsonic flows with local supersonic velocities, Prikl. Mat. Mech., 11 (1947), 199-202. 

[14]

Y. B. Hu and J. Q. Li, Sonic-supersonic solutions for the two-dimensional steady full Euler equations, Arch. Ration. Mech. Anal., 235 (2020), 1819-1871.  doi: 10.1007/s00205-019-01454-w.

[15]

Y. B. Hu and J. Q. Li, On a global supersonic-sonic patch characterized by 2-D steady full Euler equations, Adv. Differ. Equ., 25 (2020), 213-254. 

[16]

A. Kuz'min, Solvability of a problem for transonic flow with a local supersonic region, Nonlinear Differ. Equ. Appl., 8 (2001), 299-321.  doi: 10.1007/PL00001450.

[17]

A. Kuz'min, Boundary Value Problems for Transonic Flow, John Wiley and Sons, 2002.

[18]

A. Kuz'min, A modified Frankl-Morawetz problem on a transonic flow past an airfoil, Differ. Equ., 40 (2004), 1455-1460.  doi: 10.1007/s10625-005-0077-6.

[19]

J. Q. LiZ. C. Yang and Y. X. Zheng, Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations, J. Differ. Equ., 250 (2011), 782-798.  doi: 10.1016/j.jde.2010.07.009.

[20]

J. Q. Li and Y. X. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Ration. Mech. Anal., 193 (2009), 623-657.  doi: 10.1007/s00205-008-0140-6.

[21]

M. J. Li and Y. X. Zheng, Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 201 (2011), 1069-1096.  doi: 10.1007/s00205-011-0410-6.

[22]

C. Morawetz, A uniqueness theorem for Frankl's problem, Commun. Pure Appl. Math., 7 (1954), 697-703.  doi: 10.1002/cpa.3160070406.

[23]

C. Morawetz, On the non-existence of continuous transonic flow past profiles Ⅰ, Ⅱ, Commun. Pure Appl. Math., 9 (1956), 45–68; 10 (1957), 107–131. doi: 10.1002/cpa.3160100105.

[24]

C. Morawetz, On a weak solution for a transonic flow problem, Commun. Pure Appl. Math., 38 (1985), 797-817.  doi: 10.1002/cpa.3160380610.

[25]

K. SongQ. Wang and Y. X. Zheng, The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219.  doi: 10.1137/140964382.

[26]

R. Vaglio-Laurin, Transonic rotational flow over a convex corner, J. Fluid Mech., 9 (1960), 81-103.  doi: 10.1017/S0022112060000931.

[27]

C. P. Wang and Z. P. Xin, Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232 (2019), 1597-1647.  doi: 10.1007/s00205-018-01350-9.

[28]

C. J. Xie and Z. P. Xin, Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., 56 (2007), 2991-3023.  doi: 10.1512/iumj.2007.56.3108.

[29]

T. Y. Zhang and Y. X. Zheng, Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.  doi: 10.1512/iumj.2014.63.5434.

Figure 1.  Transonic phenomena in a duct
Figure 2.  The modified Frankl problem. With a velocity distribution on the arcs $ \widehat{PE} $ and $ \widehat{FQ} $, find an airfoil's arc $ \widehat{EF} $, free of boundary conditions, for the correctness of the problem in the class of smooth solutions
Figure 3.  The region $ \Omega_ \varepsilon $
[1]

Yanbo Hu, Tong Li. Sonic-supersonic solutions for the two-dimensional pseudo-steady full Euler equations. Kinetic and Related Models, 2019, 12 (6) : 1197-1228. doi: 10.3934/krm.2019046

[2]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[3]

Zineb Hassainia, Taoufik Hmidi. Steady asymmetric vortex pairs for Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1939-1969. doi: 10.3934/dcds.2020348

[4]

Gabriele Beltramo, Primoz Skraba, Rayna Andreeva, Rik Sarkar, Ylenia Giarratano, Miguel O. Bernabeu. Euler characteristic surfaces. Foundations of Data Science, 2021  doi: 10.3934/fods.2021027

[5]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[6]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[7]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5383-5405. doi: 10.3934/dcdsb.2020348

[9]

Meixiang Huang, Zhi-Qiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure and Applied Analysis, 2016, 15 (1) : 127-138. doi: 10.3934/cpaa.2016.15.127

[10]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[11]

Zhihua Huang, Xiaochun Liu. Existence theorem for a class of semilinear totally characteristic elliptic equations involving supercritical cone sobolev exponents. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3201-3216. doi: 10.3934/cpaa.2019144

[12]

Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515

[13]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[14]

Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2967. doi: 10.3934/dcdsb.2020047

[15]

Yachun Li, Qiufang Shi. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 763-778. doi: 10.3934/cpaa.2005.4.763

[16]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure and Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[17]

Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2555-2577. doi: 10.3934/cpaa.2021070

[18]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[19]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[20]

Chunqing Lu. Existence and uniqueness of single spike solution of the carrier-pearson problem. Conference Publications, 2001, 2001 (Special) : 259-264. doi: 10.3934/proc.2001.2001.259

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (154)
  • HTML views (284)
  • Cited by (0)

Other articles
by authors

[Back to Top]