
-
Previous Article
The BSE concepts for vector-valued Lipschitz algebras
- CPAA Home
- This Issue
-
Next Article
Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials
On a supersonic-sonic patch arising from the frankl problem in transonic flows
1. | Department of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China |
2. | Laboratory of Computational Physics, Institute of Applied Physics, and Computational Mathematics, Beijing, 100088, China |
3. | Center for Applied Physics and Technology, Peking University, 100871, China |
We construct a supersonic-sonic smooth patch solution for the two dimensional steady Euler equations in gas dynamics. This patch is extracted from the Frankl problem in the study of transonic flow with local supersonic bubble over an airfoil. Based on the methodology of characteristic decompositions, we establish the global existence and regularity of solutions in a partial hodograph coordinate system in terms of angle variables. The original problem is solved by transforming the solution in the partial hodograph plane back to that in the physical plane. Moreover, the uniform regularity of the solution and the regularity of an associated sonic curve are also verified.
References:
[1] |
J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator, Ⅰ, Ⅱ, Ⅲ, Duke Math. J., 98 (1999), 465–483; 111 (2002), 561–584; 128 (2005), 119–140.
doi: 10.1215/S0012-7094-02-11137-5. |
[2] |
L. Bers, On the continuation of a potential gas flow across the sonic line, Tech. Notes Nat. Adv. Comm. Aeronaut., No. 2058, 1950. |
[3] |
G. Q. Chen, C. Dafermos, M. Slemrod and D. H. Wang,
On two-dimensional sonic-subsonic flow, Commun. Math. Phys., 271 (2007), 635-637.
doi: 10.1007/s00220-007-0211-9. |
[4] |
G. Q. Chen, F. M. Huang and T. Wang,
Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.
doi: 10.1007/s00205-015-0905-7. |
[5] |
S. X. Chen,
Generalized Tricomi problem for a quasilinear mixed type equation, Chin. Ann. Math. Ser. B, 30 (2009), 527-538.
doi: 10.1007/s11401-009-0215-1. |
[6] |
S. X. Chen,
The fundamental solution of the Keldysh type operator, Sci. China Ser. A, 52 (2009), 1829-1843.
doi: 10.1007/s11425-009-0069-8. |
[7] |
S. X. Chen,
Tricomi problem for a mixed equation of second order with discontinuous coefficients, Acta Math. Sci. Ser. B, 29 (2009), 569-582.
doi: 10.1016/S0252-9602(09)60054-0. |
[8] |
S. X. Chen,
Mixed type equations in gas dynamics, Quart. Appl. Math., 68 (2010), 487-511.
doi: 10.1090/S0033-569X-2010-01164-9. |
[9] |
S. X. Chen,
A mixed equation of Tricomi-Keldysh type, J. Hyperbolic Differ. Equ., 9 (2012), 545-553.
doi: 10.1142/S0219891612500178. |
[10] |
J. Cole and L. Cook, Transonic Aerodynamics, North-Holland Series in Applied Mathematics and Mechanics, Elsevier, Amsterdam, 1986. Google Scholar |
[11] |
L. Cook,
A uniqueness proof for a transonic flow problem, Indiana Univ. Math. J., 27 (1978), 51-71.
doi: 10.1512/iumj.1978.27.27005. |
[12] |
R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948. |
[13] |
F. Frankl, On the formation of shock waves in subsonic flows with local supersonic velocities, Prikl. Mat. Mech., 11 (1947), 199-202. Google Scholar |
[14] |
Y. B. Hu and J. Q. Li,
Sonic-supersonic solutions for the two-dimensional steady full Euler equations, Arch. Ration. Mech. Anal., 235 (2020), 1819-1871.
doi: 10.1007/s00205-019-01454-w. |
[15] |
Y. B. Hu and J. Q. Li,
On a global supersonic-sonic patch characterized by 2-D steady full Euler equations, Adv. Differ. Equ., 25 (2020), 213-254.
|
[16] |
A. Kuz'min,
Solvability of a problem for transonic flow with a local supersonic region, Nonlinear Differ. Equ. Appl., 8 (2001), 299-321.
doi: 10.1007/PL00001450. |
[17] |
A. Kuz'min, Boundary Value Problems for Transonic Flow, John Wiley and Sons, 2002. Google Scholar |
[18] |
A. Kuz'min,
A modified Frankl-Morawetz problem on a transonic flow past an airfoil, Differ. Equ., 40 (2004), 1455-1460.
doi: 10.1007/s10625-005-0077-6. |
[19] |
J. Q. Li, Z. C. Yang and Y. X. Zheng,
Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations, J. Differ. Equ., 250 (2011), 782-798.
doi: 10.1016/j.jde.2010.07.009. |
[20] |
J. Q. Li and Y. X. Zheng,
Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Ration. Mech. Anal., 193 (2009), 623-657.
doi: 10.1007/s00205-008-0140-6. |
[21] |
M. J. Li and Y. X. Zheng,
Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 201 (2011), 1069-1096.
doi: 10.1007/s00205-011-0410-6. |
[22] |
C. Morawetz,
A uniqueness theorem for Frankl's problem, Commun. Pure Appl. Math., 7 (1954), 697-703.
doi: 10.1002/cpa.3160070406. |
[23] |
C. Morawetz, On the non-existence of continuous transonic flow past profiles Ⅰ, Ⅱ, Commun. Pure Appl. Math., 9 (1956), 45–68; 10 (1957), 107–131.
doi: 10.1002/cpa.3160100105. |
[24] |
C. Morawetz,
On a weak solution for a transonic flow problem, Commun. Pure Appl. Math., 38 (1985), 797-817.
doi: 10.1002/cpa.3160380610. |
[25] |
K. Song, Q. Wang and Y. X. Zheng,
The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219.
doi: 10.1137/140964382. |
[26] |
R. Vaglio-Laurin,
Transonic rotational flow over a convex corner, J. Fluid Mech., 9 (1960), 81-103.
doi: 10.1017/S0022112060000931. |
[27] |
C. P. Wang and Z. P. Xin,
Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232 (2019), 1597-1647.
doi: 10.1007/s00205-018-01350-9. |
[28] |
C. J. Xie and Z. P. Xin,
Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., 56 (2007), 2991-3023.
doi: 10.1512/iumj.2007.56.3108. |
[29] |
T. Y. Zhang and Y. X. Zheng,
Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.
doi: 10.1512/iumj.2014.63.5434. |
show all references
References:
[1] |
J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator, Ⅰ, Ⅱ, Ⅲ, Duke Math. J., 98 (1999), 465–483; 111 (2002), 561–584; 128 (2005), 119–140.
doi: 10.1215/S0012-7094-02-11137-5. |
[2] |
L. Bers, On the continuation of a potential gas flow across the sonic line, Tech. Notes Nat. Adv. Comm. Aeronaut., No. 2058, 1950. |
[3] |
G. Q. Chen, C. Dafermos, M. Slemrod and D. H. Wang,
On two-dimensional sonic-subsonic flow, Commun. Math. Phys., 271 (2007), 635-637.
doi: 10.1007/s00220-007-0211-9. |
[4] |
G. Q. Chen, F. M. Huang and T. Wang,
Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.
doi: 10.1007/s00205-015-0905-7. |
[5] |
S. X. Chen,
Generalized Tricomi problem for a quasilinear mixed type equation, Chin. Ann. Math. Ser. B, 30 (2009), 527-538.
doi: 10.1007/s11401-009-0215-1. |
[6] |
S. X. Chen,
The fundamental solution of the Keldysh type operator, Sci. China Ser. A, 52 (2009), 1829-1843.
doi: 10.1007/s11425-009-0069-8. |
[7] |
S. X. Chen,
Tricomi problem for a mixed equation of second order with discontinuous coefficients, Acta Math. Sci. Ser. B, 29 (2009), 569-582.
doi: 10.1016/S0252-9602(09)60054-0. |
[8] |
S. X. Chen,
Mixed type equations in gas dynamics, Quart. Appl. Math., 68 (2010), 487-511.
doi: 10.1090/S0033-569X-2010-01164-9. |
[9] |
S. X. Chen,
A mixed equation of Tricomi-Keldysh type, J. Hyperbolic Differ. Equ., 9 (2012), 545-553.
doi: 10.1142/S0219891612500178. |
[10] |
J. Cole and L. Cook, Transonic Aerodynamics, North-Holland Series in Applied Mathematics and Mechanics, Elsevier, Amsterdam, 1986. Google Scholar |
[11] |
L. Cook,
A uniqueness proof for a transonic flow problem, Indiana Univ. Math. J., 27 (1978), 51-71.
doi: 10.1512/iumj.1978.27.27005. |
[12] |
R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948. |
[13] |
F. Frankl, On the formation of shock waves in subsonic flows with local supersonic velocities, Prikl. Mat. Mech., 11 (1947), 199-202. Google Scholar |
[14] |
Y. B. Hu and J. Q. Li,
Sonic-supersonic solutions for the two-dimensional steady full Euler equations, Arch. Ration. Mech. Anal., 235 (2020), 1819-1871.
doi: 10.1007/s00205-019-01454-w. |
[15] |
Y. B. Hu and J. Q. Li,
On a global supersonic-sonic patch characterized by 2-D steady full Euler equations, Adv. Differ. Equ., 25 (2020), 213-254.
|
[16] |
A. Kuz'min,
Solvability of a problem for transonic flow with a local supersonic region, Nonlinear Differ. Equ. Appl., 8 (2001), 299-321.
doi: 10.1007/PL00001450. |
[17] |
A. Kuz'min, Boundary Value Problems for Transonic Flow, John Wiley and Sons, 2002. Google Scholar |
[18] |
A. Kuz'min,
A modified Frankl-Morawetz problem on a transonic flow past an airfoil, Differ. Equ., 40 (2004), 1455-1460.
doi: 10.1007/s10625-005-0077-6. |
[19] |
J. Q. Li, Z. C. Yang and Y. X. Zheng,
Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations, J. Differ. Equ., 250 (2011), 782-798.
doi: 10.1016/j.jde.2010.07.009. |
[20] |
J. Q. Li and Y. X. Zheng,
Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Ration. Mech. Anal., 193 (2009), 623-657.
doi: 10.1007/s00205-008-0140-6. |
[21] |
M. J. Li and Y. X. Zheng,
Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 201 (2011), 1069-1096.
doi: 10.1007/s00205-011-0410-6. |
[22] |
C. Morawetz,
A uniqueness theorem for Frankl's problem, Commun. Pure Appl. Math., 7 (1954), 697-703.
doi: 10.1002/cpa.3160070406. |
[23] |
C. Morawetz, On the non-existence of continuous transonic flow past profiles Ⅰ, Ⅱ, Commun. Pure Appl. Math., 9 (1956), 45–68; 10 (1957), 107–131.
doi: 10.1002/cpa.3160100105. |
[24] |
C. Morawetz,
On a weak solution for a transonic flow problem, Commun. Pure Appl. Math., 38 (1985), 797-817.
doi: 10.1002/cpa.3160380610. |
[25] |
K. Song, Q. Wang and Y. X. Zheng,
The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219.
doi: 10.1137/140964382. |
[26] |
R. Vaglio-Laurin,
Transonic rotational flow over a convex corner, J. Fluid Mech., 9 (1960), 81-103.
doi: 10.1017/S0022112060000931. |
[27] |
C. P. Wang and Z. P. Xin,
Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232 (2019), 1597-1647.
doi: 10.1007/s00205-018-01350-9. |
[28] |
C. J. Xie and Z. P. Xin,
Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., 56 (2007), 2991-3023.
doi: 10.1512/iumj.2007.56.3108. |
[29] |
T. Y. Zhang and Y. X. Zheng,
Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.
doi: 10.1512/iumj.2014.63.5434. |



[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[3] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[4] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[5] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[6] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[7] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[8] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[9] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[10] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[11] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[12] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[13] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[14] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[15] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[16] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[17] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[18] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[19] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[20] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]