March  2021, 20(3): 1199-1211. doi: 10.3934/cpaa.2021016

Cylindrical estimates for mean curvature flow in hyperbolic spaces

Center of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, China

Received  June 2020 Revised  December 2020 Published  March 2021 Early access  February 2021

We consider the mean curvature flow of a closed hypersurface in hyperbolic space. Under a suitable pinching assumption on the initial data, we prove a priori estimate on the principal curvatures which implies that the asymptotic profile near a singularity is either strictly convex or cylindrical. This result generalizes the estimates obtained in the previous works of Huisken, Sinestrari and Nguyen on the mean curvature flow of hypersurfaces in Euclidean spaces and in the spheres.

Citation: Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016
References:
[1]

S. Brendle and G. Huisken, Mean curvature flow with surgery of convex surfaces in $\mathbb{R}^3$, Invent. Math., 203 (2016), 615-654.  doi: 10.1007/s00222-015-0599-3.  Google Scholar

[2]

S. Brendle and G. Huisken, A fully nonlinear flow for two-convex hypersurfaces, Invent. Math., 2 (2017), 559-613.  doi: 10.1007/s00222-017-0736-2.  Google Scholar

[3]

E. Codá Marques, Deforming three-manifolds with positive scalar curvature, Ann. of Math., 176 (2012), 825-863.  doi: 10.4007/annals.2012.176.2.3.  Google Scholar

[4]

R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255-306.  doi: 10.4310/jdg/1214436922.  Google Scholar

[5]

G. Hamilton, Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237-266.  doi: 10.4310/jdg/1214438998.  Google Scholar

[6]

G. Hamilton, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, J. Differ. Geom., 84 (1986), 463-480.  doi: 10.1007/BF01388742.  Google Scholar

[7]

G. Hamilton, Deforming hypersurfaces of the the sphere by their mean curvature, Math. Z., 84 (1986), 205-219.  doi: 10.1007/BF01166458.  Google Scholar

[8]

G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta. Math., 183 (1999), 45-70.  doi: 10.1007/BF02392946.  Google Scholar

[9]

G. Huisken and C. Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math., 175 (2009), 137-221.  doi: 10.1007/s00222-008-0148-4.  Google Scholar

[10]

L. Lei and H. W. Xu, A new version of Huisken's convergence theorem for mean curvature flow in spheres, preprint, arXiv: math/1505.07217. Google Scholar

[11]

L. Lei and H. W. Xu, An optimal convergence theorem for mean curvature flow arbitrary codimension in hyperbolic spaces, preprint, arXiv: math/1503.06747. Google Scholar

[12]

L. Lei and H. W. Xu, Mean curvature flow of arbitrary codimension in spheres and sharp differentiable sphere theorem, preprint, arXiv: math/1506.06371v2. Google Scholar

[13]

K. F. LiuH. W. XuF. Ye and E. T. Zhao, The extension and convrgence of mean curvature flow in higher codimension, Trans. Amer. Math. Soc., 175 (2009), 137-221.  doi: 10.1090/tran/7281.  Google Scholar

[14]

K. F. LiuH. W. XuF. Ye and E. T. Zhao, Mean curvature flow of higher codimension in hyperbolic spaces, Commun. Anal. Geom., 21 (2013), 651-669.  doi: 10.4310/CAG.2013.v21.n3.a8.  Google Scholar

[15]

K. F. Liu, H. W. Xu and E. T. Zhao, Mean curvature flow of higher codimension in Riemmanian manifolds, preprint, arXiv: math/1204.0107. doi: 10.4310/CAG.2013.v21.n3.a8.  Google Scholar

[16]

H. T. Nguyen, Convexity and cylindrical estimates for mean curvature flow in the sphere, Trans. Amer. Math. Soc., 367 (2015), 4517-4536.  doi: 10.1090/S0002-9947-2015-05927-3.  Google Scholar

[17]

G. Pipoli and Carlo Sinestrari, Cylindrical estimates for mean curvature flow of hypersurfaces in CROSSes, Ann. Glob. Anal. Geom., 51 (2017), 179-188.  doi: 10.1007/s10455-016-9530-4.  Google Scholar

show all references

References:
[1]

S. Brendle and G. Huisken, Mean curvature flow with surgery of convex surfaces in $\mathbb{R}^3$, Invent. Math., 203 (2016), 615-654.  doi: 10.1007/s00222-015-0599-3.  Google Scholar

[2]

S. Brendle and G. Huisken, A fully nonlinear flow for two-convex hypersurfaces, Invent. Math., 2 (2017), 559-613.  doi: 10.1007/s00222-017-0736-2.  Google Scholar

[3]

E. Codá Marques, Deforming three-manifolds with positive scalar curvature, Ann. of Math., 176 (2012), 825-863.  doi: 10.4007/annals.2012.176.2.3.  Google Scholar

[4]

R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255-306.  doi: 10.4310/jdg/1214436922.  Google Scholar

[5]

G. Hamilton, Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237-266.  doi: 10.4310/jdg/1214438998.  Google Scholar

[6]

G. Hamilton, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, J. Differ. Geom., 84 (1986), 463-480.  doi: 10.1007/BF01388742.  Google Scholar

[7]

G. Hamilton, Deforming hypersurfaces of the the sphere by their mean curvature, Math. Z., 84 (1986), 205-219.  doi: 10.1007/BF01166458.  Google Scholar

[8]

G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta. Math., 183 (1999), 45-70.  doi: 10.1007/BF02392946.  Google Scholar

[9]

G. Huisken and C. Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math., 175 (2009), 137-221.  doi: 10.1007/s00222-008-0148-4.  Google Scholar

[10]

L. Lei and H. W. Xu, A new version of Huisken's convergence theorem for mean curvature flow in spheres, preprint, arXiv: math/1505.07217. Google Scholar

[11]

L. Lei and H. W. Xu, An optimal convergence theorem for mean curvature flow arbitrary codimension in hyperbolic spaces, preprint, arXiv: math/1503.06747. Google Scholar

[12]

L. Lei and H. W. Xu, Mean curvature flow of arbitrary codimension in spheres and sharp differentiable sphere theorem, preprint, arXiv: math/1506.06371v2. Google Scholar

[13]

K. F. LiuH. W. XuF. Ye and E. T. Zhao, The extension and convrgence of mean curvature flow in higher codimension, Trans. Amer. Math. Soc., 175 (2009), 137-221.  doi: 10.1090/tran/7281.  Google Scholar

[14]

K. F. LiuH. W. XuF. Ye and E. T. Zhao, Mean curvature flow of higher codimension in hyperbolic spaces, Commun. Anal. Geom., 21 (2013), 651-669.  doi: 10.4310/CAG.2013.v21.n3.a8.  Google Scholar

[15]

K. F. Liu, H. W. Xu and E. T. Zhao, Mean curvature flow of higher codimension in Riemmanian manifolds, preprint, arXiv: math/1204.0107. doi: 10.4310/CAG.2013.v21.n3.a8.  Google Scholar

[16]

H. T. Nguyen, Convexity and cylindrical estimates for mean curvature flow in the sphere, Trans. Amer. Math. Soc., 367 (2015), 4517-4536.  doi: 10.1090/S0002-9947-2015-05927-3.  Google Scholar

[17]

G. Pipoli and Carlo Sinestrari, Cylindrical estimates for mean curvature flow of hypersurfaces in CROSSes, Ann. Glob. Anal. Geom., 51 (2017), 179-188.  doi: 10.1007/s10455-016-9530-4.  Google Scholar

[1]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

[2]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[3]

Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010

[4]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[5]

Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076

[6]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[7]

Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1957-1991. doi: 10.3934/dcdss.2020153

[8]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

[9]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[10]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[11]

Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256

[12]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[13]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[14]

Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure & Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307

[15]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[16]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

[17]

Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116

[18]

Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1

[19]

Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963

[20]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (72)
  • HTML views (104)
  • Cited by (0)

Other articles
by authors

[Back to Top]