-
Previous Article
Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity
- CPAA Home
- This Issue
-
Next Article
Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration
Existence of solution and asymptotic behavior for a class of parabolic equations
1. | Universidade Federal de Viçosa, Departamento de Matemática, Avenida Peter Henry Rolfs, s/n, CEP 36570-900, Viçosa, MG, Brasil |
2. | Universidade Estadual de Campinas, IMECC, Departamento de Matemática, Rua Sérgio Buarque de Holanda, 651, CEP 13083-859, Campinas, SP, Brasil |
We prove existence and uniqueness of a positive solution for a class of quasilinear parabolic equations. We also show some maximum principles on the derivatives of the solution and study the asymptotic behavior of the solution near the maximal time of existence.
References:
[1] |
S. Altschuler, S. B. Angenent and Y. Giga,
Mean curvature flow through singularities for surfaces of rotation, J. Geom. Anal., 5 (1995), 293-358.
doi: 10.1007/BF02921800. |
[2] |
S. Angenent,
Parabolic equations for curves on surfaces: part I. Curves with $p$–integrable curvature, Ann. Math., 132 (1990), 451-483.
doi: 10.2307/1971426. |
[3] |
M. Athanassenas,
Behaviour of singularities of the rotationally symmetric, volume–preserving mean curvature flow, Calc. Var. PDE, 17 (2003), 1-16.
doi: 10.1007/s00526-002-0098-4. |
[4] |
K. A. Brakke, The motion of a surface by its mean curvature, Princeton University Press, 2015.
![]() |
[5] |
J. Escher and G. Simonett,
The volume preserving mean curvature flow near spheres, Proc. AMS, 126 (1998), 2789-2796.
doi: 10.1090/S0002-9939-98-04727-3. |
[6] |
J. Escher and B. V. Matioc,
Neck pinching for periodic mean curvature flows, Analysis, 30 (2010), 253-260.
doi: 10.1524/anly.2010.1039. |
[7] |
L. C. Evans and J. Spruck,
Motion of level sets by mean curvature I, J. Differ. Geom., 33 (1991), 635-681.
|
[8] |
M. E. Gage and R. S. Hamilton,
The heat equation shrinking convex plane curves, J. Diff. Geom., 23 (1986), 69-96.
|
[9] |
Z. Gang and I. M. Sigal,
Neck pinching dynamics under mean curvature flow, J. Geom. Anal., 19 (2009), 36-80.
doi: 10.1007/s12220-008-9050-y. |
[10] |
Y. Giga, Y. Seki and N. Umeda,
Mean curvature flow, closes open ends of noncompact surfaces of rotation, Comm. Part. Diff. Eq., 34 (2009), 1508-1529.
doi: 10.1080/03605300903296926. |
[11] |
M. A. Grayson,
The shape of afigure eight under the curve shortening flow, Invent. Math., 96 (1989), 177-180.
doi: 10.1007/BF01393973. |
[12] |
G. Huisken,
Nonparametric mean curvature evolution with boundary conditions, J. Differ. Equ., 77 (1989), 369-378.
doi: 10.1016/0022-0396(89)90149-6. |
[13] |
G. Huisken,
Asymptotic behaviour for singularities of the mean curvature flow, J. Differ. Geom., 31 (1990), 285-299.
|
[14] |
G. Huisken and C. Sinestrari,
Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183 (1999), 45-70.
doi: 10.1007/BF02392946. |
[15] |
I. Kim and D. Kwon,
On mean curvature flow with forcing, Commun. Partial Differ. Equ., 45 (2020), 414-455.
doi: 10.1080/03605302.2019.1695262. |
[16] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 2005.
doi: 10.1142/3302. |
[17] |
B. V. Matioc,
value problems for rotationally symmetric mean curvature flows, Arch. Math., 89 (2007), 365-372.
doi: 10.1007/s00013-007-2141-3. |
[18] |
J. A. McCoy, F. Y. Y. Mofarreh and G. H. Williams,
Fully nonlinear curvature flow of axially symmetric hypersurfaces with boundary conditions, Ann. Mat. Pura Appl., 193 (2014), 1443-1455.
doi: 10.1007/s10231-013-0337-7. |
[19] |
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, 1992. |
[20] |
K. Smoczyk,
Starshaped hypersurfaces and the mean curvature flow, Manuscr. Math., 95 (1998), 225-236.
doi: 10.1007/s002290050025. |
[21] |
H. M. Soner and P. E. Souganidis,
Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature, Commun. Partial Differ. Equ., 18 (1993), 859-894.
doi: 10.1080/03605309308820954. |
show all references
References:
[1] |
S. Altschuler, S. B. Angenent and Y. Giga,
Mean curvature flow through singularities for surfaces of rotation, J. Geom. Anal., 5 (1995), 293-358.
doi: 10.1007/BF02921800. |
[2] |
S. Angenent,
Parabolic equations for curves on surfaces: part I. Curves with $p$–integrable curvature, Ann. Math., 132 (1990), 451-483.
doi: 10.2307/1971426. |
[3] |
M. Athanassenas,
Behaviour of singularities of the rotationally symmetric, volume–preserving mean curvature flow, Calc. Var. PDE, 17 (2003), 1-16.
doi: 10.1007/s00526-002-0098-4. |
[4] |
K. A. Brakke, The motion of a surface by its mean curvature, Princeton University Press, 2015.
![]() |
[5] |
J. Escher and G. Simonett,
The volume preserving mean curvature flow near spheres, Proc. AMS, 126 (1998), 2789-2796.
doi: 10.1090/S0002-9939-98-04727-3. |
[6] |
J. Escher and B. V. Matioc,
Neck pinching for periodic mean curvature flows, Analysis, 30 (2010), 253-260.
doi: 10.1524/anly.2010.1039. |
[7] |
L. C. Evans and J. Spruck,
Motion of level sets by mean curvature I, J. Differ. Geom., 33 (1991), 635-681.
|
[8] |
M. E. Gage and R. S. Hamilton,
The heat equation shrinking convex plane curves, J. Diff. Geom., 23 (1986), 69-96.
|
[9] |
Z. Gang and I. M. Sigal,
Neck pinching dynamics under mean curvature flow, J. Geom. Anal., 19 (2009), 36-80.
doi: 10.1007/s12220-008-9050-y. |
[10] |
Y. Giga, Y. Seki and N. Umeda,
Mean curvature flow, closes open ends of noncompact surfaces of rotation, Comm. Part. Diff. Eq., 34 (2009), 1508-1529.
doi: 10.1080/03605300903296926. |
[11] |
M. A. Grayson,
The shape of afigure eight under the curve shortening flow, Invent. Math., 96 (1989), 177-180.
doi: 10.1007/BF01393973. |
[12] |
G. Huisken,
Nonparametric mean curvature evolution with boundary conditions, J. Differ. Equ., 77 (1989), 369-378.
doi: 10.1016/0022-0396(89)90149-6. |
[13] |
G. Huisken,
Asymptotic behaviour for singularities of the mean curvature flow, J. Differ. Geom., 31 (1990), 285-299.
|
[14] |
G. Huisken and C. Sinestrari,
Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183 (1999), 45-70.
doi: 10.1007/BF02392946. |
[15] |
I. Kim and D. Kwon,
On mean curvature flow with forcing, Commun. Partial Differ. Equ., 45 (2020), 414-455.
doi: 10.1080/03605302.2019.1695262. |
[16] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 2005.
doi: 10.1142/3302. |
[17] |
B. V. Matioc,
value problems for rotationally symmetric mean curvature flows, Arch. Math., 89 (2007), 365-372.
doi: 10.1007/s00013-007-2141-3. |
[18] |
J. A. McCoy, F. Y. Y. Mofarreh and G. H. Williams,
Fully nonlinear curvature flow of axially symmetric hypersurfaces with boundary conditions, Ann. Mat. Pura Appl., 193 (2014), 1443-1455.
doi: 10.1007/s10231-013-0337-7. |
[19] |
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, 1992. |
[20] |
K. Smoczyk,
Starshaped hypersurfaces and the mean curvature flow, Manuscr. Math., 95 (1998), 225-236.
doi: 10.1007/s002290050025. |
[21] |
H. M. Soner and P. E. Souganidis,
Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature, Commun. Partial Differ. Equ., 18 (1993), 859-894.
doi: 10.1080/03605309308820954. |
[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[3] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[4] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[5] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[6] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[7] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[8] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[9] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[10] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[11] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[12] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[13] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[14] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[15] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[16] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[17] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[18] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[19] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[20] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]