We prove existence and uniqueness of a positive solution for a class of quasilinear parabolic equations. We also show some maximum principles on the derivatives of the solution and study the asymptotic behavior of the solution near the maximal time of existence.
Citation: |
[1] | S. Altschuler, S. B. Angenent and Y. Giga, Mean curvature flow through singularities for surfaces of rotation, J. Geom. Anal., 5 (1995), 293-358. doi: 10.1007/BF02921800. |
[2] | S. Angenent, Parabolic equations for curves on surfaces: part I. Curves with $p$–integrable curvature, Ann. Math., 132 (1990), 451-483. doi: 10.2307/1971426. |
[3] | M. Athanassenas, Behaviour of singularities of the rotationally symmetric, volume–preserving mean curvature flow, Calc. Var. PDE, 17 (2003), 1-16. doi: 10.1007/s00526-002-0098-4. |
[4] | K. A. Brakke, The motion of a surface by its mean curvature, Princeton University Press, 2015. |
[5] | J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres, Proc. AMS, 126 (1998), 2789-2796. doi: 10.1090/S0002-9939-98-04727-3. |
[6] | J. Escher and B. V. Matioc, Neck pinching for periodic mean curvature flows, Analysis, 30 (2010), 253-260. doi: 10.1524/anly.2010.1039. |
[7] | L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differ. Geom., 33 (1991), 635-681. |
[8] | M. E. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Diff. Geom., 23 (1986), 69-96. |
[9] | Z. Gang and I. M. Sigal, Neck pinching dynamics under mean curvature flow, J. Geom. Anal., 19 (2009), 36-80. doi: 10.1007/s12220-008-9050-y. |
[10] | Y. Giga, Y. Seki and N. Umeda, Mean curvature flow, closes open ends of noncompact surfaces of rotation, Comm. Part. Diff. Eq., 34 (2009), 1508-1529. doi: 10.1080/03605300903296926. |
[11] | M. A. Grayson, The shape of afigure eight under the curve shortening flow, Invent. Math., 96 (1989), 177-180. doi: 10.1007/BF01393973. |
[12] | G. Huisken, Nonparametric mean curvature evolution with boundary conditions, J. Differ. Equ., 77 (1989), 369-378. doi: 10.1016/0022-0396(89)90149-6. |
[13] | G. Huisken, Asymptotic behaviour for singularities of the mean curvature flow, J. Differ. Geom., 31 (1990), 285-299. |
[14] | G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183 (1999), 45-70. doi: 10.1007/BF02392946. |
[15] | I. Kim and D. Kwon, On mean curvature flow with forcing, Commun. Partial Differ. Equ., 45 (2020), 414-455. doi: 10.1080/03605302.2019.1695262. |
[16] | G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 2005. doi: 10.1142/3302. |
[17] | B. V. Matioc, value problems for rotationally symmetric mean curvature flows, Arch. Math., 89 (2007), 365-372. doi: 10.1007/s00013-007-2141-3. |
[18] | J. A. McCoy, F. Y. Y. Mofarreh and G. H. Williams, Fully nonlinear curvature flow of axially symmetric hypersurfaces with boundary conditions, Ann. Mat. Pura Appl., 193 (2014), 1443-1455. doi: 10.1007/s10231-013-0337-7. |
[19] | C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, 1992. |
[20] | K. Smoczyk, Starshaped hypersurfaces and the mean curvature flow, Manuscr. Math., 95 (1998), 225-236. doi: 10.1007/s002290050025. |
[21] | H. M. Soner and P. E. Souganidis, Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature, Commun. Partial Differ. Equ., 18 (1993), 859-894. doi: 10.1080/03605309308820954. |