In this paper, we start to investigate the global existence and uniqueness of weak solutions of the $ n $-dimensional ($ n\geq3 $) hyper-dissipative Boussinesq system without thermal diffusivity in the periodic domain $ \mathbb{T}^n $ with the initial data $ u_0\in L^2(\mathbb{T}^n) $ and $ \theta_0 \in L^2(\mathbb{T}^n)\cap L^{\frac{4n}{n+2}}(\mathbb{T}^n) $. Then we focus on the vanishing thermal diffusion limit and obtain the convergent result in the sense of $ L^2 $-norm. Ultimately, we also prove the global regularity of this system in the case of 3-dimension.
Citation: |
[1] | H. Abidi and P. Zhang, On the global well-posedness of 2-D Boussinesq system with variable viscosity, Adv. Math, 305 (2017), 1202-1249. doi: 10.1016/j.aim.2016.09.036. |
[2] | N. Boardman, R. H. Ji, H. Qiu and J. Wu, Uniqueness of weak solutions to the Boussinesq equations without thermal diffusion, Commun. Math. Sci, 17 (2019), 1595-1624. doi: 10.4310/CMS.2019.v17.n6.a5. |
[3] | C. Cao and J. Wu, Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations with Vertical Dissipation, Archive for Rational Mechanics & Analysis, 208 (2013), 985-1004. doi: 10.1007/s00205-013-0610-3. |
[4] | D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513. doi: 10.1016/j.aim.2005.05.001. |
[5] | L. He, Smoothing estimates of 2D incompressible Navier-Stokes equations in bounded domains with applications, J. Funct. Anal., 262 (2012), 3430-3464. doi: 10.1016/j.jfa.2012.01.017. |
[6] | T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J, 58 (2009), 1591-1618. doi: 10.1512/iumj.2009.58.3590. |
[7] | L. Jin, J. Fan, G. Nakamura and Y. Zhou, Partial vanishing viscosity limit for the 2D Boussinesq system with a slip boundary condition, Bound. Value Probl., 2012 (2012), 20-24. doi: 10.1186/1687-2770-2012-20. |
[8] | Q. Jiu and H. Yu, Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations, Acta Mathematicae Applicatae Sinica, English Series, 32 (2016), 1-16. doi: 10.1007/s10255-016-0539-z. |
[9] | I. Kukavica and W. Wang, Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27-45. |
[10] | I. Kukavica and W. Wang, Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dyn. Differ. Equ., 32 (2020), 2061-2077. doi: 10.1007/s10884-019-09802-w. |
[11] | M. Lai, R. Pan and K. Zhao, Initial Boundary Value Problem for Two-Dimensional Viscous Boussinesq Equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760. doi: 10.1007/s00205-010-0357-z. |
[12] | A. Larios, E. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 9 (2013), 2636-2654. doi: 10.1016/j.jde.2013.07.011. |
[13] | C. Li and T. Hou, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. S., 12 (2005), 1-12. doi: 10.3934/dcds.2005.12.1. |
[14] | J. Robinson, J. Rodrigo and W. Sadowski, The Three-Dimensional Navier-Stokes Equations: Classical Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781139095143. |
[15] | K. Tosio and P. Gustavo, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure. Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. |
[16] | C. Wang and Z. Zhang, Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43-62. doi: 10.1016/j.aim.2011.05.008. |
[17] | J. Wu, X. Xu, L. Xue and Z. Ye, Regularity results for the 2D Boussinesq equations with critical or supercritical dissipation, Commun. Math. Sci., 14 (2016), 1963-1997. doi: 10.4310/CMS.2016.v14.n7.a9. |
[18] | J. Wu, X. Xu and Z. Ye, The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion, Journal De Math$\acute{e}$matiques Pures Et Appliqu$\acute{e}$s, 115 (2018), 187–217. doi: 10.1016/j.matpur.2018.01.006. |
[19] | Z. Xiang and W. Yan, Global regularity of solutions to the Boussinesq equations with fractional diffusion, Adv. Differ. Equ., 18 (2013), 1105-1128. |
[20] | K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system, Appl. Math., 60 (2015), 109-133. doi: 10.1007/s10492-015-0087-5. |
[21] | V. Yudovich, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz, 3 (1963), 1032–1066. |
[22] | Z. Ye, A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation, Acta Math. Sci., 35 (2015), 112-120. doi: 10.1016/S0252-9602(14)60144-2. |
[23] | Z. Ye, Remarks on the improved regularity criterion for the 2D Euler-Boussinesq equations with supercritical dissipation, Zeitschrift F$\ddot{u}$r Angewandte Mathematik Und Physik, 67 (2016), 149–156. doi: 10.1007/s00033-016-0742-z. |
[24] | Z. Ye, On global well-posedness for the 3D Boussinesq equations with fractional partial dissipation, Appl. Math. Lett., 90 (2019), 1-7. doi: 10.1016/j.aml.2018.10.009. |
[25] | X. Zhai, B. Dong and Z. Chen, Global well-posedness for 2D Boussinesq system with the temperature-dependent viscosity and supercritical dissipation, J. Differ. Equ., 267 (2019), 364-387. doi: 10.1016/j.jde.2019.01.011. |