In this paper, we prove the continuity of global attractors and the Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation if every equilibrium of the unperturbed equation is hyperbolic.
Citation: |
[1] |
G. S. Aragão, A. L. Pereira and M. C. Pereira, Attractors for a nonlinear parabolic problem with terms concentrating on the boundary, J. Dynam. Differ. Equ., 26 (2014), 871-888.
doi: 10.1007/s10884-014-9412-z.![]() ![]() ![]() |
[2] |
A. Arbieto and C. A. Morales, Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.
doi: 10.3934/dcds.2017151.![]() ![]() ![]() |
[3] |
J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differ. Equ., 199 (2004), 143-178.
doi: 10.1016/j.jde.2003.09.004.![]() ![]() ![]() |
[4] |
J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains. III. Continuity of attractors, J. Differ. Equ., 247 (2009), 225-259.
doi: 10.1016/j.jde.2008.12.014.![]() ![]() ![]() |
[5] |
J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary condition. Uniform bounds, Commun. Partial Differ. Equ., 25 (2000) 1–37.
doi: 10.1080/03605300008821506.![]() ![]() ![]() |
[6] |
A. V. Babin and S. Yu. Pilyugin, Continuous dependence of an attractor on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.
doi: 10.1007/BF02355582.![]() ![]() ![]() |
[7] |
P. S. Barbosa and A. L. Pereira, Continuity of attractors for $C^1$ perturbations of a smooth domain, Electron. J. Differ. Equ., 2020 (2020), 1-31.
![]() ![]() |
[8] |
P. S. Barbosa, A. L. Pereira and M. C. Pereira, Continuity of attractors for a family of $C^1$ perturbations of the square, Ann. Mat. Pura Appl., 196 (2017), 1365-1398.
doi: 10.1007/s10231-016-0620-5.![]() ![]() ![]() |
[9] |
L. A. F. De Oliveira, A. L. Pereira and M. C. Pereira, Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain, Electron. J. Differ. Equ., 100 (2005), 1-18.
![]() ![]() |
[10] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, Philadelphia, 2011.
doi: 10.1137/1.9781611972030.ch1.![]() ![]() ![]() |
[11] |
D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 1981.
![]() ![]() |
[12] |
D. B. Henry, Perturbation of the Boundary for Boundary Value Problems, Cambridge Univ. Press, 2005.
![]() |
[13] |
M. Hurley, Fixed points of topological stable flows, Trans. Amer. Math. Soc., 294 (1986), 625-633.
doi: 10.2307/2000204.![]() ![]() ![]() |
[14] |
J. A. Langa, J. C. Robinson, A. Suárez and A. Vidal-López, The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differ. Equ., 234 (2007), 607-625.
doi: 10.1016/j.jde.2006.11.016.![]() ![]() ![]() |
[15] |
J. Lee, N. Nguyen and V. M. Toi, Gromov-Hausdorff stability of global attractors of reaction diffusion equations under perturbations of domain, J. Differ. Equ., 269 (2020), 125-147.
doi: 10.1016/j.jde.2019.11.097.![]() ![]() ![]() |
[16] |
D. S. Li and P. E. Kloeden, Robustness of asymptotic stability to small time delays, Discrete Contin. Dyn. S., 13 (2005), 1007-1034.
doi: 10.3934/dcds.2005.13.1007.![]() ![]() ![]() |
[17] |
A. L. Pereira and M. C. Pereira, Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain, J. Differ. Equ., 239 (2007), 343-370.
doi: 10.1016/j.jde.2007.05.018.![]() ![]() ![]() |
[18] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
[19] |
R. F. Thomas, Topological stability: Some fundamental properties, J. Differ. Equ., 59 (1985), 103-122.
doi: 10.1016/0022-0396(85)90140-8.![]() ![]() ![]() |