-
Previous Article
The two-component Novikov-type systems with peaked solutions and $ H^1 $-conservation law
- CPAA Home
- This Issue
-
Next Article
Boundary-Domain Integral Equations equivalent to an exterior mixed bvp for the variable-viscosity compressible stokes pdes
Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation
Department of Mathematics, Chungnam National University, Daejeon 34134, Korea |
In this paper, we prove the continuity of global attractors and the Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation if every equilibrium of the unperturbed equation is hyperbolic.
References:
[1] |
G. S. Aragão, A. L. Pereira and M. C. Pereira,
Attractors for a nonlinear parabolic problem with terms concentrating on the boundary, J. Dynam. Differ. Equ., 26 (2014), 871-888.
doi: 10.1007/s10884-014-9412-z. |
[2] |
A. Arbieto and C. A. Morales,
Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.
doi: 10.3934/dcds.2017151. |
[3] |
J. M. Arrieta and A. N. Carvalho,
Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differ. Equ., 199 (2004), 143-178.
doi: 10.1016/j.jde.2003.09.004. |
[4] |
J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz,
Dynamics in dumbbell domains. III. Continuity of attractors, J. Differ. Equ., 247 (2009), 225-259.
doi: 10.1016/j.jde.2008.12.014. |
[5] |
J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary condition. Uniform bounds, Commun. Partial Differ. Equ., 25 (2000) 1–37.
doi: 10.1080/03605300008821506. |
[6] |
A. V. Babin and S. Yu. Pilyugin,
Continuous dependence of an attractor on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.
doi: 10.1007/BF02355582. |
[7] |
P. S. Barbosa and A. L. Pereira,
Continuity of attractors for $C^1$ perturbations of a smooth domain, Electron. J. Differ. Equ., 2020 (2020), 1-31.
|
[8] |
P. S. Barbosa, A. L. Pereira and M. C. Pereira,
Continuity of attractors for a family of $C^1$ perturbations of the square, Ann. Mat. Pura Appl., 196 (2017), 1365-1398.
doi: 10.1007/s10231-016-0620-5. |
[9] |
L. A. F. De Oliveira, A. L. Pereira and M. C. Pereira,
Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain, Electron. J. Differ. Equ., 100 (2005), 1-18.
|
[10] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, Philadelphia, 2011.
doi: 10.1137/1.9781611972030.ch1. |
[11] |
D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 1981. |
[12] | D. B. Henry, Perturbation of the Boundary for Boundary Value Problems, Cambridge Univ. Press, 2005. Google Scholar |
[13] |
M. Hurley,
Fixed points of topological stable flows, Trans. Amer. Math. Soc., 294 (1986), 625-633.
doi: 10.2307/2000204. |
[14] |
J. A. Langa, J. C. Robinson, A. Suárez and A. Vidal-López,
The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differ. Equ., 234 (2007), 607-625.
doi: 10.1016/j.jde.2006.11.016. |
[15] |
J. Lee, N. Nguyen and V. M. Toi,
Gromov-Hausdorff stability of global attractors of reaction diffusion equations under perturbations of domain, J. Differ. Equ., 269 (2020), 125-147.
doi: 10.1016/j.jde.2019.11.097. |
[16] |
D. S. Li and P. E. Kloeden,
Robustness of asymptotic stability to small time delays, Discrete Contin. Dyn. S., 13 (2005), 1007-1034.
doi: 10.3934/dcds.2005.13.1007. |
[17] |
A. L. Pereira and M. C. Pereira,
Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain, J. Differ. Equ., 239 (2007), 343-370.
doi: 10.1016/j.jde.2007.05.018. |
[18] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() |
[19] |
R. F. Thomas,
Topological stability: Some fundamental properties, J. Differ. Equ., 59 (1985), 103-122.
doi: 10.1016/0022-0396(85)90140-8. |
show all references
References:
[1] |
G. S. Aragão, A. L. Pereira and M. C. Pereira,
Attractors for a nonlinear parabolic problem with terms concentrating on the boundary, J. Dynam. Differ. Equ., 26 (2014), 871-888.
doi: 10.1007/s10884-014-9412-z. |
[2] |
A. Arbieto and C. A. Morales,
Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.
doi: 10.3934/dcds.2017151. |
[3] |
J. M. Arrieta and A. N. Carvalho,
Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differ. Equ., 199 (2004), 143-178.
doi: 10.1016/j.jde.2003.09.004. |
[4] |
J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz,
Dynamics in dumbbell domains. III. Continuity of attractors, J. Differ. Equ., 247 (2009), 225-259.
doi: 10.1016/j.jde.2008.12.014. |
[5] |
J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary condition. Uniform bounds, Commun. Partial Differ. Equ., 25 (2000) 1–37.
doi: 10.1080/03605300008821506. |
[6] |
A. V. Babin and S. Yu. Pilyugin,
Continuous dependence of an attractor on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.
doi: 10.1007/BF02355582. |
[7] |
P. S. Barbosa and A. L. Pereira,
Continuity of attractors for $C^1$ perturbations of a smooth domain, Electron. J. Differ. Equ., 2020 (2020), 1-31.
|
[8] |
P. S. Barbosa, A. L. Pereira and M. C. Pereira,
Continuity of attractors for a family of $C^1$ perturbations of the square, Ann. Mat. Pura Appl., 196 (2017), 1365-1398.
doi: 10.1007/s10231-016-0620-5. |
[9] |
L. A. F. De Oliveira, A. L. Pereira and M. C. Pereira,
Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain, Electron. J. Differ. Equ., 100 (2005), 1-18.
|
[10] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, Philadelphia, 2011.
doi: 10.1137/1.9781611972030.ch1. |
[11] |
D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 1981. |
[12] | D. B. Henry, Perturbation of the Boundary for Boundary Value Problems, Cambridge Univ. Press, 2005. Google Scholar |
[13] |
M. Hurley,
Fixed points of topological stable flows, Trans. Amer. Math. Soc., 294 (1986), 625-633.
doi: 10.2307/2000204. |
[14] |
J. A. Langa, J. C. Robinson, A. Suárez and A. Vidal-López,
The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differ. Equ., 234 (2007), 607-625.
doi: 10.1016/j.jde.2006.11.016. |
[15] |
J. Lee, N. Nguyen and V. M. Toi,
Gromov-Hausdorff stability of global attractors of reaction diffusion equations under perturbations of domain, J. Differ. Equ., 269 (2020), 125-147.
doi: 10.1016/j.jde.2019.11.097. |
[16] |
D. S. Li and P. E. Kloeden,
Robustness of asymptotic stability to small time delays, Discrete Contin. Dyn. S., 13 (2005), 1007-1034.
doi: 10.3934/dcds.2005.13.1007. |
[17] |
A. L. Pereira and M. C. Pereira,
Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain, J. Differ. Equ., 239 (2007), 343-370.
doi: 10.1016/j.jde.2007.05.018. |
[18] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() |
[19] |
R. F. Thomas,
Topological stability: Some fundamental properties, J. Differ. Equ., 59 (1985), 103-122.
doi: 10.1016/0022-0396(85)90140-8. |
[1] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[2] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[3] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[4] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[5] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[6] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[7] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[8] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[9] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[10] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[11] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[12] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[13] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[14] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[15] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[16] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[17] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[18] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[19] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[20] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]