-
Previous Article
Cylindrical estimates for mean curvature flow in hyperbolic spaces
- CPAA Home
- This Issue
-
Next Article
Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity
Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations
1. | School of Mathematics, South China University of Technology, Guangzhou 510641, China |
2. | School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China |
We study the large-time asymptotic behavior of solutions toward the rarefaction wave of the compressible non-isentropic Navier-Stokes equations coupling with Maxwell equations under some small perturbations of initial data and also under the assumption that the dielectric constant is bounded. For that, the dissipative structure of this hyperbolic-parabolic system is studied to include the effect of the electromagnetic field into the viscous fluid and turns out to be more complicated than that in the simpler compressible Navier-Stokes system. The proof of the main result is based on the elementary $ L^2 $ energy methods.
References:
[1] |
M. C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4nd edition, Springer-Verlag, Berlin, 2016.
doi: 10.1007/978-3-662-49451-6. |
[2] |
R. J. Duan,
Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133-197.
doi: 10.1142/S0219530512500078. |
[3] |
R. J. Duan, S. Q. Liu, H. Y. Yin and C. J. Zhu,
Stability of the rarefaction wave for a two-fluid plasma model with diffusion, Sci. China Math., 59 (2016), 67-84.
doi: 10.1007/s11425-015-5059-4. |
[4] |
J. S. Fan and Y. X. Hu,
Uniform existence of the 1-d complete equations for an electromagnetic fluid, J. Math. Anal. Appl., 419 (2014), 1-9.
doi: 10.1016/j.jmaa.2014.04.052. |
[5] |
J. S. Fan and Y. B. Ou,
Uniform existence of the 1-D full equations for a thermo-radiative electromagnetic fluid, Nonlinear Anal., 106 (2014), 151-158.
doi: 10.1016/j.na.2014.04.018. |
[6] |
F. M. Huang, J. Li and A. Matsumura,
Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197 (2010), 89-116.
doi: 10.1007/s00205-009-0267-0. |
[7] |
F. M. Huang, A. Matsumura and Z. P. Xin,
Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 55-77.
doi: 10.1007/s00205-005-0380-7. |
[8] |
F. M. Huang and T. Wang,
Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system, Indiana Univ. Math. J., 65 (2016), 1833-1875.
doi: 10.1512/iumj.2016.65.5914. |
[9] |
F. M. Huang, Z. P. Xin and T. Yang,
Contact discontinuity with general perturbations for gas motions, Adv. Math., 219 (2008), 1246-1297.
doi: 10.1016/j.aim.2008.06.014. |
[10] |
Y. T. Huang and H. X. Liu,
Stability of rarefaction wave for a macroscopic model derived from the Vlasov-Maxwell-Boltzmann system, Acta Math. Sci. Ser. B, 38 (2018), 857-888.
doi: 10.1016/S0252-9602(18)30789-6. |
[11] |
I. Imai,
General Principles of Magneto-Fluid Dynamics. In: Magneto-Fulid Dynamics, Suppl. Prog. Theor. Phys., 24 (1962), 1-34.
|
[12] |
S. Jiang and F. C. Li,
Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptot. Anal., 95 (2015), 161-185.
doi: 10.3233/ASY-151321. |
[13] |
T. Kato,
The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205.
doi: 10.1007/BF00280740. |
[14] |
S. Kawashima,
Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222.
doi: 10.1007/BF03167869. |
[15] |
S. Kawashima and A. Matsumura,
Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97-127.
|
[16] |
S. Kawashima, A. Matsumura and K. Nishihara,
Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas, Proc. Japan Acad. Ser. Math. Sci., 62 (1986), 249-252.
|
[17] |
S. Kawashima and Y. Shizuta,
Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 10 (1986), 131-149.
doi: 10.21099/tkbjm/1496160397. |
[18] |
S. Kawashima and Y. Shizuta,
Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid. II, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 181-184.
|
[19] |
T. P. Liu,
Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc., 56 (1985), 1-108.
doi: 10.1090/memo/0328. |
[20] |
T. P. Liu,
Shock waves for compressible Navier-Stokes equations are stable, Commun. Pure Appl. Math., 39 (1986), 565-594.
doi: 10.1002/cpa.3160390502. |
[21] |
T. P. Liu and Z. P. Xin,
Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Commun. Math. Phys., 118 (1988), 451-465.
|
[22] |
F. Q. Luo, H. C. Yao and C. J. Zhu, Stability of rarefaction wave for isentropic compressible Navier-Stokes-Maxwell equations, Nonlinear Anal. Real World Appl., 59 (2021), 103234.
doi: 10.1016/j.nonrwa.2020.103234. |
[23] |
T. Luo, H. Y. Yin and C. J. Zhu,
Stability of the composite wave for compressible Navier-Stokes/Allen-Cahn system, Math. Models Methods Appl. Sci., 30 (2020), 343-385.
doi: 10.1142/S0218202520500098. |
[24] |
N. Masmoudi,
Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl., 93 (2010), 559-571.
doi: 10.1016/j.matpur.2009.08.007. |
[25] |
A. Matsumura, Waves in compressible fluids: viscous shock, rarefaction, and contact waves, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 2495–2548.
doi: 10.1007/978-3-319-13344-7_60. |
[26] |
A. Matsumura and K. Nishihara,
Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.
doi: 10.1007/BF03167088. |
[27] |
D. Mihalas and W. B. Mihalas, Foundations of Radiation Hydrodynamics, Oxford Univ. Press, 1984.
![]() |
[28] |
I. S. Pai, Magnetogasdynamics and Plasma Dynamics, Springer-Verlag, 1962. |
[29] |
L. Z. Ruan, H. Y. Yin and C. J. Zhu,
Stability of the superposition of rarefaction wave and contact discontinuity for the non-isentropic Navier-Stokes-Poisson system, Math. Methods Appl. Sci., 40 (2017), 2784-2810.
doi: 10.1002/mma.4198. |
[30] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[31] |
X. Xu,
Asymptotic behavior of solutions to an electromagnetic fluid model, Z. Angew. Math. Phys., 69 (2018), 1-19.
doi: 10.1007/s00033-018-0945-6. |
show all references
References:
[1] |
M. C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4nd edition, Springer-Verlag, Berlin, 2016.
doi: 10.1007/978-3-662-49451-6. |
[2] |
R. J. Duan,
Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133-197.
doi: 10.1142/S0219530512500078. |
[3] |
R. J. Duan, S. Q. Liu, H. Y. Yin and C. J. Zhu,
Stability of the rarefaction wave for a two-fluid plasma model with diffusion, Sci. China Math., 59 (2016), 67-84.
doi: 10.1007/s11425-015-5059-4. |
[4] |
J. S. Fan and Y. X. Hu,
Uniform existence of the 1-d complete equations for an electromagnetic fluid, J. Math. Anal. Appl., 419 (2014), 1-9.
doi: 10.1016/j.jmaa.2014.04.052. |
[5] |
J. S. Fan and Y. B. Ou,
Uniform existence of the 1-D full equations for a thermo-radiative electromagnetic fluid, Nonlinear Anal., 106 (2014), 151-158.
doi: 10.1016/j.na.2014.04.018. |
[6] |
F. M. Huang, J. Li and A. Matsumura,
Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197 (2010), 89-116.
doi: 10.1007/s00205-009-0267-0. |
[7] |
F. M. Huang, A. Matsumura and Z. P. Xin,
Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 55-77.
doi: 10.1007/s00205-005-0380-7. |
[8] |
F. M. Huang and T. Wang,
Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system, Indiana Univ. Math. J., 65 (2016), 1833-1875.
doi: 10.1512/iumj.2016.65.5914. |
[9] |
F. M. Huang, Z. P. Xin and T. Yang,
Contact discontinuity with general perturbations for gas motions, Adv. Math., 219 (2008), 1246-1297.
doi: 10.1016/j.aim.2008.06.014. |
[10] |
Y. T. Huang and H. X. Liu,
Stability of rarefaction wave for a macroscopic model derived from the Vlasov-Maxwell-Boltzmann system, Acta Math. Sci. Ser. B, 38 (2018), 857-888.
doi: 10.1016/S0252-9602(18)30789-6. |
[11] |
I. Imai,
General Principles of Magneto-Fluid Dynamics. In: Magneto-Fulid Dynamics, Suppl. Prog. Theor. Phys., 24 (1962), 1-34.
|
[12] |
S. Jiang and F. C. Li,
Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptot. Anal., 95 (2015), 161-185.
doi: 10.3233/ASY-151321. |
[13] |
T. Kato,
The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205.
doi: 10.1007/BF00280740. |
[14] |
S. Kawashima,
Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222.
doi: 10.1007/BF03167869. |
[15] |
S. Kawashima and A. Matsumura,
Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97-127.
|
[16] |
S. Kawashima, A. Matsumura and K. Nishihara,
Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas, Proc. Japan Acad. Ser. Math. Sci., 62 (1986), 249-252.
|
[17] |
S. Kawashima and Y. Shizuta,
Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 10 (1986), 131-149.
doi: 10.21099/tkbjm/1496160397. |
[18] |
S. Kawashima and Y. Shizuta,
Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid. II, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 181-184.
|
[19] |
T. P. Liu,
Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc., 56 (1985), 1-108.
doi: 10.1090/memo/0328. |
[20] |
T. P. Liu,
Shock waves for compressible Navier-Stokes equations are stable, Commun. Pure Appl. Math., 39 (1986), 565-594.
doi: 10.1002/cpa.3160390502. |
[21] |
T. P. Liu and Z. P. Xin,
Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Commun. Math. Phys., 118 (1988), 451-465.
|
[22] |
F. Q. Luo, H. C. Yao and C. J. Zhu, Stability of rarefaction wave for isentropic compressible Navier-Stokes-Maxwell equations, Nonlinear Anal. Real World Appl., 59 (2021), 103234.
doi: 10.1016/j.nonrwa.2020.103234. |
[23] |
T. Luo, H. Y. Yin and C. J. Zhu,
Stability of the composite wave for compressible Navier-Stokes/Allen-Cahn system, Math. Models Methods Appl. Sci., 30 (2020), 343-385.
doi: 10.1142/S0218202520500098. |
[24] |
N. Masmoudi,
Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl., 93 (2010), 559-571.
doi: 10.1016/j.matpur.2009.08.007. |
[25] |
A. Matsumura, Waves in compressible fluids: viscous shock, rarefaction, and contact waves, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 2495–2548.
doi: 10.1007/978-3-319-13344-7_60. |
[26] |
A. Matsumura and K. Nishihara,
Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.
doi: 10.1007/BF03167088. |
[27] |
D. Mihalas and W. B. Mihalas, Foundations of Radiation Hydrodynamics, Oxford Univ. Press, 1984.
![]() |
[28] |
I. S. Pai, Magnetogasdynamics and Plasma Dynamics, Springer-Verlag, 1962. |
[29] |
L. Z. Ruan, H. Y. Yin and C. J. Zhu,
Stability of the superposition of rarefaction wave and contact discontinuity for the non-isentropic Navier-Stokes-Poisson system, Math. Methods Appl. Sci., 40 (2017), 2784-2810.
doi: 10.1002/mma.4198. |
[30] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[31] |
X. Xu,
Asymptotic behavior of solutions to an electromagnetic fluid model, Z. Angew. Math. Phys., 69 (2018), 1-19.
doi: 10.1007/s00033-018-0945-6. |
[1] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[2] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[3] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[4] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[5] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[6] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[7] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[8] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[9] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[10] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[11] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[12] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[13] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[14] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[15] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[16] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[17] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[18] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[19] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[20] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]