    doi: 10.3934/cpaa.2021023

## On problems with weighted elliptic operator and general growth nonlinearities

 University of Texas, Rio Grande Valley, Edinburg, TX 78539, USA

Received  August 2020 Revised  December 2020 Published  April 2021

Fund Project: The author is partially supported by the Simons Foundation Collaboration Grants for Mathematicians 524335

This article establishes existence, non-existence and Liouville-type theorems for nonlinear equations of the form
 $\begin{equation*} -div (|x|^{a} D u ) = f(x,u), \; u > 0,\, \mbox{ in } \Omega, \end{equation*}$
where
 $N \geq 3$
,
 $\Omega$
is an open domain in
 $\mathbb{R}^N$
containing the origin,
 $N-2+a > 0$
and
 $f$
satisfies structural conditions, including certain growth properties. The first main result is a non-existence theorem for boundary-value problems in bounded domains star-shaped with respect to the origin, provided
 $f$
exhibits supercritical growth. A consequence of this is the existence of positive entire solutions to the equation for
 $f$
exhibiting the same growth. A Liouville-type theorem is then established, which asserts no positive solution of the equation in
 $\Omega = \mathbb{R}^N$
exists provided the growth of
 $f$
is subcritical. The results are then extended to systems of the form
 $\begin{equation*} -div (|x|^{a} D u_1) \! = \! f_{1}(x,u_1,u_2), -div (|x|^{a} D u_2) \! = \! f_{2}(x,u_1,u_2), u_1, u_2 \!>\! 0,\, \mbox{ in } \Omega, \end{equation*}$
but after overcoming additional obstacles not present in the single equation. Specific cases of our results recover classical ones for a renowned problem connected with finding best constants in Hardy-Sobolev and Caffarelli-Kohn-Nirenberg inequalities as well as existence results for well-known elliptic systems.
Citation: John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021023
##### References:
  M. F. Bidaut-Veron and H. Giacomini, A new dynamical approach of Emden-Fowler equations and systems, Adv. Differ. Equ., 15 (2010), 1033-1082. Google Scholar  J. Busca and R. Manásevich, A Liouville-type theorem for Lane–Emden systems, Indiana Univ. Math. J., 51 (2002), 37-51.  doi: 10.1512/iumj.2002.51.2160.  Google Scholar  L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275. Google Scholar  F. Catrina and Z. Wang, On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Commun. Pure Appl. Math., 54 (2001), 229-258.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar  W. Chen and C. Li, An integral system and the Lane–Emden conjecture, Discrete Contin. Dyn. S., 4 (2009), 1167-1184.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar  K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev–Hardy inequality, J. Lond. Math. Soc., 2 (1993), 137-151.  doi: 10.1112/jlms/s2-48.1.137.  Google Scholar  E. N. Dancer, Y. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differ. Equ., 250 (2011), 3281-3310.  doi: 10.1016/j.jde.2011.02.005.  Google Scholar  Y. Du and Z. Guo, Finite Morse-index solutions and asymptotics of weighted nonlinear elliptic equations, Adv. Differ. Equ., 18 (2013), 737-768. Google Scholar  Y. Du and Z. Guo, Finite Morse index solutions of weighted elliptic equations and the critical exponents, Calc. Var. Partial Differ. Equ., 54 (2015), 3116-3181.  doi: 10.1007/s00526-015-0897-z.  Google Scholar  M. Fazly and N. Ghoussoub, On the Hénon-Lane-Emden conjecture, Discrete Contin. Dyn. S., 34 (2014), 2513-2533.  doi: 10.3934/dcds.2014.34.2513.  Google Scholar  D. G. De Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Sup. Pisa, 21 (1994), 387-397. Google Scholar  Z. Guo and F. Wan, Further study of a weighted elliptic equation, Sci. China Math., 60 (2017), 2391-2406.  doi: 10.1007/s11425-017-9134-7.  Google Scholar  C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Soc., 144 (2016), 3731-3740.  doi: 10.1090/proc/13166.  Google Scholar  C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Commun. Partial Differ. Equ., 41 (2016), 1029-1039.  doi: 10.1080/03605302.2016.1190376.  Google Scholar  J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, J. Partial Differ. Equ., 19 (2006), 256-270. Google Scholar  E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in ${R}^{N}$, Differ. Integral Equ., 9 (1996), 465-480. Google Scholar  Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy–Hénon systems, Adv. Differ. Equ., 17 (2012), 605-634. Google Scholar  P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar  W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differ. Equ., 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.  Google Scholar  J. Serrin and H. Zou, Non-existence of positive solutions of Lane–Emden systems, Differ. Integral Equ., 9 (1996), 635-653. Google Scholar  J. Serrin and H. Zou, Existence of positive solutions of the Lane–Emden system, Atti Sem. Mat. Fis. Univ. Modena, 46 (1996), 369-380. Google Scholar  Ph. Souplet, The proof of the Lane–Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar  J. Villavert, Shooting with degree theory: {A}nalysis of some weighted poly-harmonic systems, J. Differ. Equ., 257 (2014), 1148-1167.  doi: 10.1016/j.jde.2014.05.003.  Google Scholar  J. Villavert, Classification of radial solutions to equations related to Caffarelli-Kohn-Nirenberg inequalities, Ann. Mat. Pura Appl., 199 (2020), 299-315.  doi: 10.1007/s10231-019-00879-0.  Google Scholar

show all references

##### References:
  M. F. Bidaut-Veron and H. Giacomini, A new dynamical approach of Emden-Fowler equations and systems, Adv. Differ. Equ., 15 (2010), 1033-1082. Google Scholar  J. Busca and R. Manásevich, A Liouville-type theorem for Lane–Emden systems, Indiana Univ. Math. J., 51 (2002), 37-51.  doi: 10.1512/iumj.2002.51.2160.  Google Scholar  L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275. Google Scholar  F. Catrina and Z. Wang, On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Commun. Pure Appl. Math., 54 (2001), 229-258.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar  W. Chen and C. Li, An integral system and the Lane–Emden conjecture, Discrete Contin. Dyn. S., 4 (2009), 1167-1184.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar  K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev–Hardy inequality, J. Lond. Math. Soc., 2 (1993), 137-151.  doi: 10.1112/jlms/s2-48.1.137.  Google Scholar  E. N. Dancer, Y. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differ. Equ., 250 (2011), 3281-3310.  doi: 10.1016/j.jde.2011.02.005.  Google Scholar  Y. Du and Z. Guo, Finite Morse-index solutions and asymptotics of weighted nonlinear elliptic equations, Adv. Differ. Equ., 18 (2013), 737-768. Google Scholar  Y. Du and Z. Guo, Finite Morse index solutions of weighted elliptic equations and the critical exponents, Calc. Var. Partial Differ. Equ., 54 (2015), 3116-3181.  doi: 10.1007/s00526-015-0897-z.  Google Scholar  M. Fazly and N. Ghoussoub, On the Hénon-Lane-Emden conjecture, Discrete Contin. Dyn. S., 34 (2014), 2513-2533.  doi: 10.3934/dcds.2014.34.2513.  Google Scholar  D. G. De Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Sup. Pisa, 21 (1994), 387-397. Google Scholar  Z. Guo and F. Wan, Further study of a weighted elliptic equation, Sci. China Math., 60 (2017), 2391-2406.  doi: 10.1007/s11425-017-9134-7.  Google Scholar  C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Soc., 144 (2016), 3731-3740.  doi: 10.1090/proc/13166.  Google Scholar  C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Commun. Partial Differ. Equ., 41 (2016), 1029-1039.  doi: 10.1080/03605302.2016.1190376.  Google Scholar  J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, J. Partial Differ. Equ., 19 (2006), 256-270. Google Scholar  E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in ${R}^{N}$, Differ. Integral Equ., 9 (1996), 465-480. Google Scholar  Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy–Hénon systems, Adv. Differ. Equ., 17 (2012), 605-634. Google Scholar  P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar  W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differ. Equ., 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.  Google Scholar  J. Serrin and H. Zou, Non-existence of positive solutions of Lane–Emden systems, Differ. Integral Equ., 9 (1996), 635-653. Google Scholar  J. Serrin and H. Zou, Existence of positive solutions of the Lane–Emden system, Atti Sem. Mat. Fis. Univ. Modena, 46 (1996), 369-380. Google Scholar  Ph. Souplet, The proof of the Lane–Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar  J. Villavert, Shooting with degree theory: {A}nalysis of some weighted poly-harmonic systems, J. Differ. Equ., 257 (2014), 1148-1167.  doi: 10.1016/j.jde.2014.05.003.  Google Scholar  J. Villavert, Classification of radial solutions to equations related to Caffarelli-Kohn-Nirenberg inequalities, Ann. Mat. Pura Appl., 199 (2020), 299-315.  doi: 10.1007/s10231-019-00879-0.  Google Scholar
  Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033  Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036  Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016  Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825  Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002  Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065  Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $H^1$. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019  Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005  Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024  Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061  Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037  Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022  Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395  Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511  K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038  Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023  Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363  Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $\Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109  Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073  Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

2019 Impact Factor: 1.105

Article outline

[Back to Top]