[1]
|
P. Berloff and S. Meacham, On the stability of the wind-driven circulation, J. Mar. Res., 56 (1998), 937-993.
doi: 10.1357/002224098765173437.
|
[2]
|
P. Cessi and G. R. Ierley, Symmetry-breaking multiple equilibria in quasi-geostrophic, wind-driven flows, J. Phys. Oceanogr., 25 (1995), 1196-1205.
doi: 10.1175/1520-0485(1995)025<1196:SBMEIQ>2.0.CO;2.
|
[3]
|
J. Charney and D. Straus, Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems, J. Atmos. Sci., 37 (1980), 1157-1176.
doi: 10.1175/1520-0469(1980)037<1157:FDIMEA>2.0.CO;2.
|
[4]
|
J. G. Charney and J. DeVore, Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., 36 (1979), 1205-1216.
doi: 10.1175/1520-0469(1979)036<1205:mfeita>2.0.co;2.
|
[5]
|
J. G. Charney, J. Shukla and K. C. Mo, Comparison of a barotropic blocking theory with observation, J. Atmos. Sci., 38 (1981), 762-779.
doi: 10.1175/1520-0469(1981)038<0762:COABBT>2.0.CO;2.
|
[6]
|
Z. Chen, M. Ghil, E. Simonnet and S. Wang, Hopf bifurcation in quasi-geostrophic channel flow, SIAM J. Appl. Math., 64 (2003), 343-368.
doi: 10.1137/S0036139902406164.
|
[7]
|
Z. Chen and X. Xiong, Equilibrium states of the charney-devore quasi-geostrophic equation in mid-latitude atmosphere, J. Math. Anal. Appl., 444 (2016), 1403-1416.
doi: 10.1016/j.jmaa.2016.07.021.
|
[8]
|
H. Dijkstra, T. Sengul, J. Shen and S. Wang, Dynamic transitions of quasi-geostrophic channel flow, SIAM J. Appl. Math., 75 (2015), 2361-2378.
doi: 10.1137/15M1008166.
|
[9]
|
R. N. Ferreira and W. H. Schubert, Barotropic aspects of itcz breakdown, J. Atmos. Sci., 54 (19997), 261-285.
doi: 10.1175/1520-0469(1997)054<0261:BAOIB>2.0.CO;2.
|
[10]
|
M. Ghil, The wind-driven ocean circulation: applying dynamical systems theory to a climate problem, Discrete Contin. Dyn. Syst., 37 (2017), 189-228.
doi: 10.3934/dcds.2017008.
|
[11]
|
M. Ghil, M. D. Chekround and E. Simonnete, Climate dynamics and fluid mechanics: Natural variability and related uncertainties, Physica D, 237 (2008), 2111-2126.
doi: 10.1016/j.physd.2008.03.036.
|
[12]
|
D. Han, M. Hernandez and Q. Wang, Dynamic bifurcation and transition in the Rayleigh-Bénard enard convection with internal heating and varying gravity, Commun. Math. Sci., 17 (2019), 175-192.
doi: 10.4310/CMS.2019.v17.n1.a7.
|
[13]
|
D. Han, M. Hernandez and Q. Wang, On the instabilities and transitions of the western boundary current, Commun. Computa. Phys., 26 (2019), 35-56.
doi: 10.4208/cicp.oa-2018-0066.
|
[14]
|
D. Han, M. Hernandez and Q. Wang, Dynamic Transitions and Bifurcations for a Class of Axisymmetric Geophysical Fluid Flow, SIAM J. Appl. Dyn. Syst., 20 (2020), 38-64.
doi: 10.1137/20M1321139.
|
[15]
|
S. Jiang, F. F. Jin and M. Ghil, Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model, J. Phys. Oceanogr., 25 (1995), 764-786.
doi: 10.1175/1520-0485(1995)025<0764:MEPAAS>2.0.CO;2.
|
[16]
|
E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2002.
|
[17]
|
C. Kieu, T. Sengul, Q. Wang and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two-layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), 196-215.
doi: 10.1016/j.cnsns.2018.05.010.
|
[18]
|
Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7.
|
[19]
|
B. Legras and M. Ghil, Persistent anomalies, blocking and variations in atmospheric predictability, J. Atmos. Sci., 42 (1985), 433-471.
doi: 10.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO;2.
|
[20]
|
C. Lu, Y. Mao, Q. Wang and D. Yan, Hopf bifurcation and transition of three-dimensional wind-driven ocean circulation problem, J. Differ. Equ., 267 (2019), 2560-2593.
doi: 10.1016/j.jde.2019.03.021.
|
[21]
|
C. Lu, Y. Mao, T. Sengul and Q. Wang, On the spectral instability and bifurcation of the 2d-quasi-geostrophic potential vorticity equation with a generalized kolmogorov forcing, Physica D, 43 (2020), 132296.
doi: 10.1016/j.physd.2019.132296.
|
[22]
|
T. Ma and A. Wang, Rayleigh-Bénard convection: dynamics and structure in the physical space, Commun. Math. Sci., 5 (2007), 553-574.
|
[23]
|
T. Ma and S. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-8963-4.
|
[24]
|
S. P. Meacham, Low-frequency variability in the wind-driven circulation, J. Phys. Oceanogr., 30 (2000), 269-293.
doi: 10.1175/1520-0485(2000)030<0269:LFVITW>2.0.CO;2.
|
[25]
|
B. T. Nadiga and B. P. Luce, Global bifurcation of shilnikov type in a double-gyre ocean model, J. Phys. Oceanogr., 31 (2001), 2669-2690.
doi: 10.1175/1520-0485(2001)031<2669:GBOSTI>2.0.CO;2.
|
[26]
|
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4612-4650-3.
|
[27]
|
S. Rambaldi and K. Mo, Forced stationary solutions in a barotropic channel: Multiple equilibria and theory of nonlinear resonance, J. Atmos. Sci., 41 (1984), 3135-3146.
doi: 10.1175/1520-0469(1984)041<3135:FSSIAB>2.0.CO;2.
|
[28]
|
J. Shen, T. T. Medjo and S. Wang, On a wind-driven, double-gyre, quasi-geostrophic ocean model: numerical simulations and structural analysis, J. Comput. Phys., 155, 387–409.
doi: 10.1006/jcph.1999.6344.
|
[29]
|
J. Shen, T. Tang and L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin Heidelberg, 2011.
doi: 10.1007/978-3-540-71041-7.
|
[30]
|
V. A. Sheremet, G. R. Ierley and V. M. Kamenkovich, Eigenanalysis of the two-dimensional wind-driven ocean circulation problem, J. Mar. Res., 55 (1997), 57-92.
doi: 10.1357/0022240973224463.
|
[31]
|
E. Simonnet, M. Ghi, K. Ide, R. Temam and S. Wang, Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part I: Steady-state solution, J. Phys. Oceanogr., 33 (2003), 712-728.
doi: 10.1175/1520-0485(2003)33<712:LVISMO>2.0.CO;2.
|
[32]
|
E. Simonnet, M. Ghi, K. Ide, R. Temam and S. Wang, Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: time-dependent solutions, J. Phys. Oceanogr., 33 (2003), 729-751.
doi: 10.1175/1520-0485(2003)33<729:LVISMO>2.0.CO;2.
|
[33]
|
E. Simonnet, M. Ghil and H. Dijkstra, Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation, J. Mar. Res., 63 (2005), 931-956.
doi: 10.1357/002224005774464210.
|
[34]
|
T. Ma and S. Wang, Stability and bifurcation of the taylor problem, Arch. Rational Mech. Anal., 181 (2006), 149-176.
doi: 10.1007/s00205-006-0415-8.
|
[35]
|
G. Veronis, Wind-driven ocean circulation: Part 1. linear theory and perturbation analysis, Deep-Sea Research, 13 (1966), 17–29.
doi: 10.1016/0011-7471(66)90003-9.
|
[36]
|
G. Veronis, Wind-driven ocean circulation: Part 2. numerical solutions of the non-linear problem, Deep-Sea Research, 13 (1966), 31–55.
doi: 10.1016/0011-7471(66)90004-0.
|
[37]
|
C. C. Wang and G. Magnusdottir, The itcz in the central and eastern pacific on synoptic time scales, Mon. Wea. Rev., 134 (2006), 1405-1421.
doi: 10.1175/MWR3130.1.
|
[38]
|
Q. Wang, C. Kieu and T. A. Vu, Large-scale dynamics of tropical cyclone formation associated with ITCZ breakdown, Atmos. Chem. Phys., 19 (2019), 8383-8397.
doi: 10.5194/acp-19-8383-2019.
|
[39]
|
G. Wolansky, Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation, Commun. Pure Appl. Math., 41 (1988), 19-46.
doi: 10.1002/cpa.3160410104.
|
[40]
|
G. Wolansky, The barotropic vorticity equation under forcing and dissipation: Bifurcations of nonsymmetric responses and multiplicity of solutions, SIAM J. Appl. Math., 41 (1989), 1585-1607.
doi: 10.1137/0149096.
|