In this paper, we proved a fractional Kirchhoff version of Hopf lemma for anti-symmetry functions and applied it to prove the symmetry and monotonicity of solutions for fractional Kirchhoff equations in the whole space by method of moving planes. We also obtain radially symmetry and monotonicity of solutions for fractional Kirchhoff equations in the unit ball. As far as we know, this is the first time to apply direct method of moving planes to fractional Kirchhoff problems.
Citation: |
[1] |
C. O. Alves and F. J. S. A. Correa, On existence of solutions for a class of problem involving a nonlinear operator, Commun. Appl. Nonlinear Anal., 8 (2001), 43-56.
![]() ![]() |
[2] |
P. and Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.
doi: 10.1007/BF02100605.![]() ![]() ![]() |
[3] |
G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.
doi: 10.1016/j.na.2015.06.014.![]() ![]() ![]() |
[4] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[5] |
W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016.![]() ![]() ![]() |
[6] |
W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
[7] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[8] |
W. Chen and S. Qi, Direct methods on fractional equations, Discrete Contin. Dyn. S., 39 (2019), 1269-1310.
doi: 10.3934/dcds.2019055.![]() ![]() ![]() |
[9] |
A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.
doi: 10.1016/j.na.2013.08.011.![]() ![]() ![]() |
[10] |
X. He and W. Zou, Ground state solutions for a class of fractional Kirchhoff equations with critical growth, Sci. China Math., 62 (2019), 853-890.
doi: 10.1007/s11425-017-9399-6.![]() ![]() ![]() |
[11] |
G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
![]() |
[12] |
C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc., 147 (2019), 1565-1575.
doi: 10.1090/proc/14342.![]() ![]() ![]() |
[13] |
G. Li and Y. Niu, The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation, Acta Math. Sci., 40 (2020), 1-23.
doi: 10.1007/s10473-020-0107-y.![]() ![]() ![]() |
[14] |
Y. Li and W. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in $ {\mathbb R}^n$, Commun. Partial Differ. Equ., 18 (1993), 1043-1054.
doi: 10.1080/03605309308820960.![]() ![]() ![]() |
[15] |
L. J. L, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346.
doi: 10.1016/S0304-0208(08)70870-3.![]() ![]() ![]() |
[16] |
S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N. S.), 96 (1975), 152–166.
![]() ![]() |
[17] |
P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $ {\mathbb R}^n$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.
doi: 10.4171/RMI/879.![]() ![]() ![]() |
[18] |
B. Zhang and L. Wang, Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 1061-1081.
doi: 10.1017/prm.2018.105.![]() ![]() ![]() |