• Previous Article
    On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation
  • CPAA Home
  • This Issue
  • Next Article
    Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production
doi: 10.3934/cpaa.2021029

On the uniqueness of solutions of a semilinear equation in an annulus

1. 

Departamento de Matemática, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile

2. 

Mathematical Institute, Tohoku University, Aoba 6–3, Aramaki, Aoba-ku, Sendai 980–8578, Japan

* Corresponding author

Received  September 2020 Revised  January 2021 Published  March 2021

Fund Project: This research was supported by FONDECYT-1190102 for the first and second author, and FONDECYT- 1170665 for the third author and by JSPS KAKENHI Grant Number 19K03595 and 17H01095 for the fourth author

We establish the uniqueness of positive radial solutions of
$ \begin{align} \begin{cases} \Delta u +f(u) = 0, \quad x\in A \\ u(x) = 0 \qquad \qquad x\in \partial A \end{cases} \;\;\;\; (P)\end{align} $
where
$ A: = A_{a, b} = \{ x\in {\mathbb R}^n : a<|x|<b \} $
,
$ 0<a<b\le\infty $
. We assume that the nonlinearity
$ f\in C[0, \infty)\cap C^1(0, \infty) $
is such that
$ f(0) = 0 $
and satisfies some convexity and growth conditions, and either
$ f(s)>0 $
for all
$ s>0 $
, or has one zero at
$ B>0 $
, is non positive and not identically 0 in
$ (0, B) $
and it is positive in
$ (B, \infty) $
.
Citation: Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021029
References:
[1]

J. Byeon, Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differ. Equ., 136 (1997), 136-165.  doi: 10.1006/jdeq.1996.3241.  Google Scholar

[2]

J. Cheng and L. Guang, Uniqueness of positive radial solutions for Dirichlet problems on annular domains, J. Math. Anal. Appl., 338 (2008), 416-426.  doi: 10.1016/j.jmaa.2007.05.027.  Google Scholar

[3]

C. V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differ. Equ., 54 (1984), 429-437.  doi: 10.1016/0022-0396(84)90153-0.  Google Scholar

[4]

C. V. Coffman, Uniqueness of the positive radial solution on an annulus of the Dirichlet problem for $\Delta u-u+u^p = 0$, J. Differ. Equ., 128 (1996), 379-386.  doi: 10.1006/jdeq.1996.0100.  Google Scholar

[5]

C. CortázarM. García-Huidobro and C. Yarur, On the uniqueness of the second bound state solution of a semilinear equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2091-2110.  doi: 10.1016/j.anihpc.2009.01.004.  Google Scholar

[6]

L. Erbe and M. Tang, Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball, J. Differ. Equ., 138 (1997), 351-379.  doi: 10.1006/jdeq.1997.3279.  Google Scholar

[7]

L. Erbe and M. Tang, Uniqueness of positive radial solutions of $\Delta u + f(|x|, u) = 0$, Differ. Integral Equ., 11 (1998), 725-743.   Google Scholar

[8]

P. FelmerS. Martinez and K. Tanaka, Uniqueness of radially symmetric positive solutions for $-\Delta u+u = u^p$ in an annulus, J. Differ. Equ., 245 (2008), 1198-1209.  doi: 10.1016/j.jde.2008.06.006.  Google Scholar

[9]

B. FranchiE. Lanconelli and J. Serrin, Existence and Uniqueness of nonnegative solutions of quasilinear equations in ${\mathbb R}^n$, Adv. math., 118 (1996), 177-243.  doi: 10.1006/aima.1996.0021.  Google Scholar

[10]

C. C. Fu and S. S. Lin, Uniqueness of positive radial solutions for semilinear elliptic equations on annular domains, Nonlinear Anal., 44 (2001), 749-758.  doi: 10.1016/S0362-546X(99)00303-X.  Google Scholar

[11]

X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differ. Equ, 70 (1987), 69-92.  doi: 10.1016/0022-0396(87)90169-0.  Google Scholar

[12]

P. Korman, On the multiplicity of solutions of semilinear equations, Math. Nachr., 229 (2001), 119-127.  doi: 10.1002/1522-2616(200109)229:1<119::AID-MANA119>3.3.CO;2-G.  Google Scholar

[13]

M. K. Kwong and L. Q. Zhang, Uniqueness of the positive solution of $\Delta u+f(u) = 0$ in an annulus, Differ. Integral Equ., 4 (1991), 583-599.   Google Scholar

[14]

C. Li and Y. Zhou, Uniqueness of positive solutions to a class of semilinear elliptic equations, Bound. Value Probl., 2011 (2011), 9 pp. doi: 10.1186/1687-2770-2011-38.  Google Scholar

[15]

Y. Y. Li, Existence of many positive solutions of semilinear equations on annulus, J. Differ. Equ., 83 (1990), 348-367.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[16]

W. M. Ni, Uniqueness of solutions of nonlinear Dirichlet problems, J. Differ. Equ., 50 (1983), 289-304.  doi: 10.1016/0022-0396(83)90079-7.  Google Scholar

[17]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u, r) = 0$, Commun. Pure Appl. Math., 38 (1985), 67-108.  doi: 10.1002/cpa.3160380105.  Google Scholar

[18]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 49 (2000), 897-923.  doi: 10.1512/iumj.2000.49.1893.  Google Scholar

[19]

N. Shioji, S. Tanaka and K. Watanabe, Uniqueness of positive radial solutions of superlinear elliptic equations in annuli, preprint  Google Scholar

[20]

N. Shioji and K. Watanabe, A generalized Pohožaev identity and uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$, J. Differ. Equ., 255 (2013), 4448-4475.  doi: 10.1016/j.jde.2013.08.017.  Google Scholar

[21]

N. Shioji and K. Watanabe, Uniqueness and nondegeneracy of positive radial solutions of ${\rm{div}} (\rho\nabla u)+\rho(-gu+hu^p) = 0$, Calc. Var. Partial Differ. Equ., 55 (2016), 42 pp. doi: 10.1007/s00526-016-0970-2.  Google Scholar

[22]

M. Tang, Uniqueness of positive radial solutions for $\Delta u-u+u^p=0$ on an annulus, J. Differ. Equ., 189 (2003), 148-160.  doi: 10.1016/S0022-0396(02)00142-0.  Google Scholar

[23]

S. L. Yadava, Uniqueness of positive radial solutions of the Dirichlet problems $-\Delta u=u^p\pm u^q$ in an annulus, J. Differ. Equ., 139 (1997), 194-217.  doi: 10.1006/jdeq.1997.3283.  Google Scholar

[24]

S. L. Yadava, Uniqueness of positive radial solutions of a semilinear Dirichlet problem in an annulus, Proc. Roy. Soc. Edinb. Sect. A, 130 (2000), 1417-1428.  doi: 10.1017/S0308210500000755.  Google Scholar

show all references

References:
[1]

J. Byeon, Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differ. Equ., 136 (1997), 136-165.  doi: 10.1006/jdeq.1996.3241.  Google Scholar

[2]

J. Cheng and L. Guang, Uniqueness of positive radial solutions for Dirichlet problems on annular domains, J. Math. Anal. Appl., 338 (2008), 416-426.  doi: 10.1016/j.jmaa.2007.05.027.  Google Scholar

[3]

C. V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differ. Equ., 54 (1984), 429-437.  doi: 10.1016/0022-0396(84)90153-0.  Google Scholar

[4]

C. V. Coffman, Uniqueness of the positive radial solution on an annulus of the Dirichlet problem for $\Delta u-u+u^p = 0$, J. Differ. Equ., 128 (1996), 379-386.  doi: 10.1006/jdeq.1996.0100.  Google Scholar

[5]

C. CortázarM. García-Huidobro and C. Yarur, On the uniqueness of the second bound state solution of a semilinear equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2091-2110.  doi: 10.1016/j.anihpc.2009.01.004.  Google Scholar

[6]

L. Erbe and M. Tang, Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball, J. Differ. Equ., 138 (1997), 351-379.  doi: 10.1006/jdeq.1997.3279.  Google Scholar

[7]

L. Erbe and M. Tang, Uniqueness of positive radial solutions of $\Delta u + f(|x|, u) = 0$, Differ. Integral Equ., 11 (1998), 725-743.   Google Scholar

[8]

P. FelmerS. Martinez and K. Tanaka, Uniqueness of radially symmetric positive solutions for $-\Delta u+u = u^p$ in an annulus, J. Differ. Equ., 245 (2008), 1198-1209.  doi: 10.1016/j.jde.2008.06.006.  Google Scholar

[9]

B. FranchiE. Lanconelli and J. Serrin, Existence and Uniqueness of nonnegative solutions of quasilinear equations in ${\mathbb R}^n$, Adv. math., 118 (1996), 177-243.  doi: 10.1006/aima.1996.0021.  Google Scholar

[10]

C. C. Fu and S. S. Lin, Uniqueness of positive radial solutions for semilinear elliptic equations on annular domains, Nonlinear Anal., 44 (2001), 749-758.  doi: 10.1016/S0362-546X(99)00303-X.  Google Scholar

[11]

X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differ. Equ, 70 (1987), 69-92.  doi: 10.1016/0022-0396(87)90169-0.  Google Scholar

[12]

P. Korman, On the multiplicity of solutions of semilinear equations, Math. Nachr., 229 (2001), 119-127.  doi: 10.1002/1522-2616(200109)229:1<119::AID-MANA119>3.3.CO;2-G.  Google Scholar

[13]

M. K. Kwong and L. Q. Zhang, Uniqueness of the positive solution of $\Delta u+f(u) = 0$ in an annulus, Differ. Integral Equ., 4 (1991), 583-599.   Google Scholar

[14]

C. Li and Y. Zhou, Uniqueness of positive solutions to a class of semilinear elliptic equations, Bound. Value Probl., 2011 (2011), 9 pp. doi: 10.1186/1687-2770-2011-38.  Google Scholar

[15]

Y. Y. Li, Existence of many positive solutions of semilinear equations on annulus, J. Differ. Equ., 83 (1990), 348-367.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[16]

W. M. Ni, Uniqueness of solutions of nonlinear Dirichlet problems, J. Differ. Equ., 50 (1983), 289-304.  doi: 10.1016/0022-0396(83)90079-7.  Google Scholar

[17]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u, r) = 0$, Commun. Pure Appl. Math., 38 (1985), 67-108.  doi: 10.1002/cpa.3160380105.  Google Scholar

[18]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 49 (2000), 897-923.  doi: 10.1512/iumj.2000.49.1893.  Google Scholar

[19]

N. Shioji, S. Tanaka and K. Watanabe, Uniqueness of positive radial solutions of superlinear elliptic equations in annuli, preprint  Google Scholar

[20]

N. Shioji and K. Watanabe, A generalized Pohožaev identity and uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$, J. Differ. Equ., 255 (2013), 4448-4475.  doi: 10.1016/j.jde.2013.08.017.  Google Scholar

[21]

N. Shioji and K. Watanabe, Uniqueness and nondegeneracy of positive radial solutions of ${\rm{div}} (\rho\nabla u)+\rho(-gu+hu^p) = 0$, Calc. Var. Partial Differ. Equ., 55 (2016), 42 pp. doi: 10.1007/s00526-016-0970-2.  Google Scholar

[22]

M. Tang, Uniqueness of positive radial solutions for $\Delta u-u+u^p=0$ on an annulus, J. Differ. Equ., 189 (2003), 148-160.  doi: 10.1016/S0022-0396(02)00142-0.  Google Scholar

[23]

S. L. Yadava, Uniqueness of positive radial solutions of the Dirichlet problems $-\Delta u=u^p\pm u^q$ in an annulus, J. Differ. Equ., 139 (1997), 194-217.  doi: 10.1006/jdeq.1997.3283.  Google Scholar

[24]

S. L. Yadava, Uniqueness of positive radial solutions of a semilinear Dirichlet problem in an annulus, Proc. Roy. Soc. Edinb. Sect. A, 130 (2000), 1417-1428.  doi: 10.1017/S0308210500000755.  Google Scholar

[1]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[3]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[4]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[5]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[6]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[7]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[8]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[9]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[10]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[11]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[12]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[13]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[14]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[15]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[16]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

[17]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[18]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[19]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[20]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

2019 Impact Factor: 1.105

Article outline

[Back to Top]