April  2021, 20(4): 1545-1557. doi: 10.3934/cpaa.2021032

On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells

a. 

Université de Poitiers, Laboratoire I3M et Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Equipe DACTIM-MIS, 11 Boulevard Marie et Pierre Curie-Bâtiment H3-TSA 61125, 86073 Poitiers Cedex 9, France

b. 

CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France

Received  October 2020 Revised  January 2021 Published  April 2021 Early access  March 2021

Our aim in this paper is to prove the existence of solutions for a model for the proliferative-to-invasive transition of hypoxic glioma cells. The equations consist of the coupling of a Cahn–Hilliard equation for the tumor density and a Cahn–Hilliard type equation for the oxygen concentration. The main difficulty is to prove the existence of a biologically relevant solution. This is achieved by considering modified equations and taking logarithmic nonlinear terms in the Cahn–Hilliard equations. After that we show a local in time weak solution which is conditionally global in time.

Citation: Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1545-1557. doi: 10.3934/cpaa.2021032
References:
[1]

A. C. AristotelousO. A. Karakashian and S. M. Wise, Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source, IMA J. Numer. Anal., 35 (2015), 1167-1198.  doi: 10.1093/imanum/dru035.  Google Scholar

[2]

J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801.   Google Scholar

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[4]

L. CherfilsA. Miranville and S. Zelik, On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2013-2026.  doi: 10.3934/dcdsb.2014.19.2013.  Google Scholar

[5]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliferative-to-invasive transition of hypoxic glioma cells, Nonlinear Anal., 189(2019), 17 pp. doi: 10.1016/j.na.2019.111572.  Google Scholar

[6]

H. GarckeK. F. LamR. Nurnberg and E. Sitka, A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525-577.  doi: 10.1142/S0218202518500148.  Google Scholar

[7]

H. GarckeK. F. LamE. Sitka and V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.  doi: 10.1142/S0218202516500263.  Google Scholar

[8]

H. Gomez, Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells, Integr. Biol., 9 (2017), 257-262.   Google Scholar

[9]

E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77(2008), 7 pp. Google Scholar

[10]

L. Li, A. Miranville and R. Guillevin, Cahn-Hilliard models for glial cells, Appl. Math. Optim., to appear. Google Scholar

[11]

L. Li, A. Miranville and R. Guillevin, A coupled Cahn-Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells, Quart. Appl. Math., to appear. Google Scholar

[12]

L. Li, L. Cherfils, A. Miranville and R. Guillevin, A Cahn-Hilliard model with a proliferation term for the proliferative-to-invasive transition of hypoxic glioma cells, Commun. Math. Sci., to appear. doi: 10.1080/00036811.2012.671301.  Google Scholar

[13]

A. Miranville, Existence of solutions to a Cahn-Hilliard type equation with a logarithmic nonlinear term, Mediterr. J. Math., 16 (2019), 1-18.  doi: 10.1007/s00009-018-1284-8.  Google Scholar

[14]

A. Miranville, The Cahn-Hilliard equation: recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics 95, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019. doi: 10.1137/1.9781611975925.  Google Scholar

[15]

A. MiranvilleE. Rocca and G. Schimperna, On the long time behavior of a tumor growth model, J. Differ. Equ., 267 (2019), 2616-2642.  doi: 10.1016/j.jde.2019.03.028.  Google Scholar

[16]

A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations: Evolutionary Partial Differential Equations, Vol.(4), (eds. C.M. Dafermos and M. Pokorny), Elsevier, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00004-2.  Google Scholar

[17]

Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839.   Google Scholar

show all references

References:
[1]

A. C. AristotelousO. A. Karakashian and S. M. Wise, Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source, IMA J. Numer. Anal., 35 (2015), 1167-1198.  doi: 10.1093/imanum/dru035.  Google Scholar

[2]

J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801.   Google Scholar

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[4]

L. CherfilsA. Miranville and S. Zelik, On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2013-2026.  doi: 10.3934/dcdsb.2014.19.2013.  Google Scholar

[5]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliferative-to-invasive transition of hypoxic glioma cells, Nonlinear Anal., 189(2019), 17 pp. doi: 10.1016/j.na.2019.111572.  Google Scholar

[6]

H. GarckeK. F. LamR. Nurnberg and E. Sitka, A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525-577.  doi: 10.1142/S0218202518500148.  Google Scholar

[7]

H. GarckeK. F. LamE. Sitka and V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.  doi: 10.1142/S0218202516500263.  Google Scholar

[8]

H. Gomez, Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells, Integr. Biol., 9 (2017), 257-262.   Google Scholar

[9]

E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77(2008), 7 pp. Google Scholar

[10]

L. Li, A. Miranville and R. Guillevin, Cahn-Hilliard models for glial cells, Appl. Math. Optim., to appear. Google Scholar

[11]

L. Li, A. Miranville and R. Guillevin, A coupled Cahn-Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells, Quart. Appl. Math., to appear. Google Scholar

[12]

L. Li, L. Cherfils, A. Miranville and R. Guillevin, A Cahn-Hilliard model with a proliferation term for the proliferative-to-invasive transition of hypoxic glioma cells, Commun. Math. Sci., to appear. doi: 10.1080/00036811.2012.671301.  Google Scholar

[13]

A. Miranville, Existence of solutions to a Cahn-Hilliard type equation with a logarithmic nonlinear term, Mediterr. J. Math., 16 (2019), 1-18.  doi: 10.1007/s00009-018-1284-8.  Google Scholar

[14]

A. Miranville, The Cahn-Hilliard equation: recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics 95, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019. doi: 10.1137/1.9781611975925.  Google Scholar

[15]

A. MiranvilleE. Rocca and G. Schimperna, On the long time behavior of a tumor growth model, J. Differ. Equ., 267 (2019), 2616-2642.  doi: 10.1016/j.jde.2019.03.028.  Google Scholar

[16]

A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations: Evolutionary Partial Differential Equations, Vol.(4), (eds. C.M. Dafermos and M. Pokorny), Elsevier, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00004-2.  Google Scholar

[17]

Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839.   Google Scholar

[1]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[2]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[3]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[4]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021038

[5]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[6]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[7]

Pablo Álvarez-Caudevilla. Existence and multiplicity of stationary solutions for a Cahn--Hilliard-type equation in $\mathbb{R}^N$. Conference Publications, 2015, 2015 (special) : 10-18. doi: 10.3934/proc.2015.0010

[8]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[9]

Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024

[10]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[11]

Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations & Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315

[12]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[13]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

[14]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[15]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[16]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[17]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[18]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[19]

Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113

[20]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (158)
  • HTML views (112)
  • Cited by (0)

Other articles
by authors

[Back to Top]