-
Previous Article
On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence
- CPAA Home
- This Issue
-
Next Article
Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary
On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells
a. | Université de Poitiers, Laboratoire I3M et Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Equipe DACTIM-MIS, 11 Boulevard Marie et Pierre Curie-Bâtiment H3-TSA 61125, 86073 Poitiers Cedex 9, France |
b. | CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France |
Our aim in this paper is to prove the existence of solutions for a model for the proliferative-to-invasive transition of hypoxic glioma cells. The equations consist of the coupling of a Cahn–Hilliard equation for the tumor density and a Cahn–Hilliard type equation for the oxygen concentration. The main difficulty is to prove the existence of a biologically relevant solution. This is achieved by considering modified equations and taking logarithmic nonlinear terms in the Cahn–Hilliard equations. After that we show a local in time weak solution which is conditionally global in time.
References:
[1] |
A. C. Aristotelous, O. A. Karakashian and S. M. Wise,
Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source, IMA J. Numer. Anal., 35 (2015), 1167-1198.
doi: 10.1093/imanum/dru035. |
[2] |
J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801. Google Scholar |
[3] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. Google Scholar |
[4] |
L. Cherfils, A. Miranville and S. Zelik,
On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2013-2026.
doi: 10.3934/dcdsb.2014.19.2013. |
[5] |
M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliferative-to-invasive transition of hypoxic glioma cells, Nonlinear Anal., 189(2019), 17 pp.
doi: 10.1016/j.na.2019.111572. |
[6] |
H. Garcke, K. F. Lam, R. Nurnberg and E. Sitka,
A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525-577.
doi: 10.1142/S0218202518500148. |
[7] |
H. Garcke, K. F. Lam, E. Sitka and V. Styles,
A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.
doi: 10.1142/S0218202516500263. |
[8] |
H. Gomez, Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells, Integr. Biol., 9 (2017), 257-262. Google Scholar |
[9] |
E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77(2008), 7 pp. Google Scholar |
[10] |
L. Li, A. Miranville and R. Guillevin, Cahn-Hilliard models for glial cells, Appl. Math. Optim., to appear. Google Scholar |
[11] |
L. Li, A. Miranville and R. Guillevin, A coupled Cahn-Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells, Quart. Appl. Math., to appear. Google Scholar |
[12] |
L. Li, L. Cherfils, A. Miranville and R. Guillevin, A Cahn-Hilliard model with a proliferation term for the proliferative-to-invasive transition of hypoxic glioma cells, Commun. Math. Sci., to appear.
doi: 10.1080/00036811.2012.671301. |
[13] |
A. Miranville,
Existence of solutions to a Cahn-Hilliard type equation with a logarithmic nonlinear term, Mediterr. J. Math., 16 (2019), 1-18.
doi: 10.1007/s00009-018-1284-8. |
[14] |
A. Miranville, The Cahn-Hilliard equation: recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics 95, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019.
doi: 10.1137/1.9781611975925. |
[15] |
A. Miranville, E. Rocca and G. Schimperna,
On the long time behavior of a tumor growth model, J. Differ. Equ., 267 (2019), 2616-2642.
doi: 10.1016/j.jde.2019.03.028. |
[16] |
A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations: Evolutionary Partial Differential Equations, Vol.(4), (eds. C.M. Dafermos and M. Pokorny), Elsevier, Amsterdam, 2008.
doi: 10.1016/S1874-5717(08)00004-2. |
[17] |
Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839. Google Scholar |
show all references
References:
[1] |
A. C. Aristotelous, O. A. Karakashian and S. M. Wise,
Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source, IMA J. Numer. Anal., 35 (2015), 1167-1198.
doi: 10.1093/imanum/dru035. |
[2] |
J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801. Google Scholar |
[3] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. Google Scholar |
[4] |
L. Cherfils, A. Miranville and S. Zelik,
On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2013-2026.
doi: 10.3934/dcdsb.2014.19.2013. |
[5] |
M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliferative-to-invasive transition of hypoxic glioma cells, Nonlinear Anal., 189(2019), 17 pp.
doi: 10.1016/j.na.2019.111572. |
[6] |
H. Garcke, K. F. Lam, R. Nurnberg and E. Sitka,
A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525-577.
doi: 10.1142/S0218202518500148. |
[7] |
H. Garcke, K. F. Lam, E. Sitka and V. Styles,
A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.
doi: 10.1142/S0218202516500263. |
[8] |
H. Gomez, Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells, Integr. Biol., 9 (2017), 257-262. Google Scholar |
[9] |
E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77(2008), 7 pp. Google Scholar |
[10] |
L. Li, A. Miranville and R. Guillevin, Cahn-Hilliard models for glial cells, Appl. Math. Optim., to appear. Google Scholar |
[11] |
L. Li, A. Miranville and R. Guillevin, A coupled Cahn-Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells, Quart. Appl. Math., to appear. Google Scholar |
[12] |
L. Li, L. Cherfils, A. Miranville and R. Guillevin, A Cahn-Hilliard model with a proliferation term for the proliferative-to-invasive transition of hypoxic glioma cells, Commun. Math. Sci., to appear.
doi: 10.1080/00036811.2012.671301. |
[13] |
A. Miranville,
Existence of solutions to a Cahn-Hilliard type equation with a logarithmic nonlinear term, Mediterr. J. Math., 16 (2019), 1-18.
doi: 10.1007/s00009-018-1284-8. |
[14] |
A. Miranville, The Cahn-Hilliard equation: recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics 95, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019.
doi: 10.1137/1.9781611975925. |
[15] |
A. Miranville, E. Rocca and G. Schimperna,
On the long time behavior of a tumor growth model, J. Differ. Equ., 267 (2019), 2616-2642.
doi: 10.1016/j.jde.2019.03.028. |
[16] |
A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations: Evolutionary Partial Differential Equations, Vol.(4), (eds. C.M. Dafermos and M. Pokorny), Elsevier, Amsterdam, 2008.
doi: 10.1016/S1874-5717(08)00004-2. |
[17] |
Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839. Google Scholar |
[1] |
Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030 |
[2] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034 |
[3] |
Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021034 |
[4] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021032 |
[5] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[6] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[7] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[8] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[9] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[10] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[11] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[12] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[13] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[14] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402 |
[15] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[16] |
Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035 |
[17] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[18] |
Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021028 |
[19] |
Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565 |
[20] |
Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]