This paper and [
Citation: |
[1] | B. Barrios and A. Quaas, The sharp exponent in the study of the nonlocal Hénon equation in $ \mathbb{R}^N$: a Liouville theorem and an existence result, Calc. Var. Partial Differ. Equ., 59 (2020), 22 pp. doi: 10.1007/s00526-020-01763-z. |
[2] | H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555. |
[3] | M. Chipot, M. Chlebík, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation, J. Math. Anal. Appl., 223 (1998), 429-471. doi: 10.1006/jmaa.1998.5958. |
[4] | L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. |
[5] | X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53. doi: 10.1016/j.anihpc.2013.02.001. |
[6] | W. Dai and G. Qin, Liouville type theorems for fractional and higher order Hénon-Hardy type equations via the method of scaling spheres, preprint, arXiv: 1810.02752. doi: 10.1016/j.jmaa.2011.08.081. |
[7] | E. N. Dancer, Y. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differ. Equ., 250 (2011), 3281-3310. doi: 10.1016/j.jde.2011.02.005. |
[8] | J. Dávila, L. Dupaigne and M. Montenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal., 7 (2008), 795-817. doi: 10.3934/cpaa.2008.7.795. |
[9] | J. Dávila, L. Dupaigne and J. Wei, On the fractional Lane–Emden equation, Trans. Amer. Math. Soc., 369 (2017), 6087-6104. doi: 10.1090/tran/6872. |
[10] | F. Demengel and G. Demengel, Functional spaces for the theory of elliptic partial differential equations, Translated from the 2007 French original by Reinie Erné. Universitext. Springer, London; EDP Sciences, Les Ulis, 2012. doi: 10.1007/978-1-4471-2807-6. |
[11] | E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. |
[12] | M. M. Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential, Nonlinear Anal., 193 (2020), 29 pp. doi: 10.1016/j.na.2018.07.008. |
[13] | M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Commun. Partial Differ. Equ., 39 (2014), 354-397. doi: 10.1080/03605302.2013.825918. |
[14] | M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), 5827-5867. doi: 10.3934/dcds.2015.35.5827. |
[15] | M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227. doi: 10.1016/j.jfa.2012.06.018. |
[16] | A. Farina, On the classification of solutions of the Lane–Emden equation on unbounded domains of $\mathbb R^N$, J. Math. Pures Appl., 87 (2007), 537-561. doi: 10.1016/j.matpur.2007.03.001. |
[17] | M. Fazly and J. Wei, On stable solutions of the fractional Hénon-Lane-Emden equation, Commun. Contemp. Math., 18 (2016), 24 pp. doi: 10.1142/S021919971650005X. |
[18] | R. L. Frank, E. H. Lieb and R. Seiringer, Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950. doi: 10.1090/S0894-0347-07-00582-6. |
[19] | J. Harada, Positive solutions to the Laplace equation with nonlinear boundary conditions on the half space, Calc. Var. Partial Differ. Equ., 50 (2014), 399-435. doi: 10.1007/s00526-013-0640-6. |
[20] | S. Hasegawa, N. Ikoma and T. Kawakami, On weak solutions to a fractional Hardy–Hénon equation: Part 2: Existence, preprint, arXiv: 2102.05873. doi: 10.1093/integr/xyy013. |
[21] | T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014), 1111-1171. doi: 10.4171/JEMS/456. |
[22] | Y. Li and J. Bao, Fractional Hardy–Hénon equations on exterior domains, J. Differ. Equ., 266 (2019), 1153-1175. doi: 10.1016/j.jde.2018.07.062. |
[23] | J. L. Lions, Théorémes de trace et d'interpolation. I, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 389-403. |
[24] | W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162. |
[25] | C. Wang and D. Ye, Some Liouville theorems for Hénon type elliptic equations, J. Funct. Anal., 262 (2012), no. 4, 1705–1727. doi: 10.1016/j.jfa.2012.05.025. |
[26] | C. Wang and D. Ye, Corrigendum to "Some Liouville theorems for Hénon type elliptic equations" [J. Funct. Anal. 262 (4) (2012) 1705–1727] [MR2873856], J. Funct. Anal., 263 (2012), no. 6, 1766–1768. |
[27] | J. Yang, Fractional Sobolev-Hardy inequality in $ \mathbb{R}^N$, Nonlinear Anal., 119 (2015), 179-185. doi: 10.1016/j.na.2014.09.009. |